IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Post-l1-penalized estimators in high-dimensional linear regression models

Listed author(s):
  • Alexandre Belloni

    (Institute for Fiscal Studies)

  • Victor Chernozhukov


    (Institute for Fiscal Studies and MIT)

In this paper we study post-penalized estimators which apply ordinary, unpenalized linear regression to the model selected by first-step penalized estimators, typically LASSO. It is well known that LASSO can estimate the regression function at nearly the oracle rate, and is thus hard to improve upon. We show that post-LASSO performs at least as well as LASSO in terms of the rate of convergence, and has the advantage of a smaller bias. Remarkably, this performance occurs even if the LASSO-based model selection 'fails' in the sense of missing some components of the 'true' regression model. By the 'true' model we mean here the best s-dimensional approximation to the regression function chosen by the oracle. Furthermore, post-LASSO can perform strictly better than LASSO, in the sense of a strictly faster rate of convergence, if the LASSO-based model selection correctly includes all components of the 'true' model as a subset and also achieves a sufficient sparsity. In the extreme case, when LASSO perfectly selects the 'true' model, the post-LASSO estimator becomes the oracle estimator. An important ingredient in our analysis is a new sparsity bound on the dimension of the model selected by LASSO which guarantees that this dimension is at most of the same order as the dimension of the 'true' model. Our rate results are non-asymptotic and hold in both parametric and nonparametric models. Moreover, our analysis is not limited to the LASSO estimator in the first step, but also applies to other estimators, for example, the trimmed LASSO, Dantzig selector, or any other estimator with good rates and good sparsity. Our analysis covers both traditional trimming and a new practical, completely data-driven trimming scheme that induces maximal sparsity subject to maintaining a certain goodness-of-fit. The latter scheme has theoretical guarantees similar to those of LASSO or post-LASSO, but it dominates these procedures as well as traditional trimming in a wide variety of experiments.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP13/10.

in new window

Date of creation: 03 Jun 2010
Handle: RePEc:ifs:cemmap:13/10
Contact details of provider: Postal:
The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE

Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Web page:

More information through EDIRC

Order Information: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:13/10. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.