IDEAS home Printed from https://ideas.repec.org/p/icr/wpmath/28-2004.html
   My bibliography  Save this paper

A strong law of large numbers for capacities

Author

Listed:
  • Fabio Maccheroni
  • Massimo Marinacci

Abstract

We consider a totally monotone capacity on a Polish space and a sequence of bounded p.i.i.d. random variables. We show that, on a full set, any cluster point of empirical averages lies between the lower and the upper Choquet integrals of the random variables, provided either the random variables or the capacity are continuous.

Suggested Citation

  • Fabio Maccheroni & Massimo Marinacci, 2004. "A strong law of large numbers for capacities," ICER Working Papers - Applied Mathematics Series 28-2004, ICER - International Centre for Economic Research.
  • Handle: RePEc:icr:wpmath:28-2004
    as

    Download full text from publisher

    File URL: http://www.bemservizi.unito.it/repec/icr/wp2004/Maccheroni-Marinacci28-04.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini & Marco Taboga, 2009. "Portfolio Selection With Monotone Meanā€Variance Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 487-521, July.
    2. Ghossoub, Mario, 2011. "Monotone equimeasurable rearrangements with non-additive probabilities," MPRA Paper 37629, University Library of Munich, Germany, revised 23 Mar 2012.
    3. Klibanoff, Peter & Marinacci, Massimo & Mukerji, Sujoy, 2009. "Recursive smooth ambiguity preferences," Journal of Economic Theory, Elsevier, vol. 144(3), pages 930-976, May.

    More about this item

    Keywords

    Capacities; Choquet integral; Strong law of large numbers;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:icr:wpmath:28-2004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Daniele Pennesi (email available below). General contact details of provider: https://edirc.repec.org/data/icerrit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.