IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Numerics of Implied Binomial Trees

Listed author(s):
  • Wolfgang Härdle
  • Alena Mysickova

Market option prices in last 20 years con rmed deviations from the Black and Scholes (BS) models assumptions, especially on the BS implied volatility. Implied binomial trees (IBT) models capture the variations of the implied volatility known as \volatility smile". They provide a discrete approximation to the continuous risk neutral process for the underlying assets. In this paper, we describe the numerical construction of IBTs by Derman and Kani (DK) and an alternative method by Barle and Cakici (BC). After the formation of IBT we can estimate the implied local volatility and the state price density (SPD). We compare the SPD estimated by the IBT methods with a conditional density computed from a simulated di usion process. In addition, we apply the IBT to EUREX option prices and compare the estimated SPDs. Both IBT methods coincide well with the estimation from the simulated process, though the BC method shows smaller deviations in case of high interest rate, particularly.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Sonderforschungsbereich 649, Humboldt University, Berlin, Germany in its series SFB 649 Discussion Papers with number SFB649DP2008-044.

in new window

Length: 27 pages
Date of creation: Jun 2008
Handle: RePEc:hum:wpaper:sfb649dp2008-044
Contact details of provider: Postal:
Spandauer Str. 1,10178 Berlin

Phone: +49-30-2093-5708
Fax: +49-30-2093-5617
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2008-044. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.