IDEAS home Printed from https://ideas.repec.org/p/hhs/nhhfms/2025_023.html
   My bibliography  Save this paper

Technical versus Environmental Efficiency in Steel Production: A Global Perspective

Author

Listed:

Abstract

This study provides the first global, plant-level assessment of both technical and environmental efficiency in steel production using a novel micro-dataset covering 147 steel mills across 50 countries from 2019 to 2023. Applying a Stochastic Directional Distance Function, we estimate each plant’s distance to the production frontier and compute the shadow price of CO2e emissions. Our results reveal a robust negative correlation between inefficiency and marginal abatement cost: technically efficient electric arc furnace (EAF) mini-mills — particularly prevalent in North America — display low inefficiency scores (∼0.2) and face high marginal abatement costs (up to 13.4 USD/ton). Conversely, integrated plants in developing countries often operate inefficiently (scores up to ∼0.8) but can abate emissions at very low cost (∼0.4 USD/ton), with Europe positioned between these two extremes. Estimated shadow prices are consistently lower than prevailing carbon market rates, highlighting a systemic under-valuation of emissions in the absence of regulatory pressure. This underpricing, in turn, reflects the highly uneven technological and economic conditions across steel plants worldwide, reinforcing the need for climate policies that account for both efficiency levels and plant configurations, and that tailor interventions to the specific costs and capacities of decarbonization.

Suggested Citation

  • Benini, Giacomo & Enstad, Erik & Mersha, Amare Alemaye & Rossini, Luca, 2025. "Technical versus Environmental Efficiency in Steel Production: A Global Perspective," Discussion Papers 2025/23, Norwegian School of Economics, Department of Business and Management Science.
  • Handle: RePEc:hhs:nhhfms:2025_023
    as

    Download full text from publisher

    File URL: https://hdl.handle.net/11250/3211422
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    2. Haider, Salman & Danish, Mohd Shadab & Sharma, Ruchi, 2019. "Assessing energy efficiency of Indian paper industry and influencing factors: A slack-based firm-level analysis," Energy Economics, Elsevier, vol. 81(C), pages 454-464.
    3. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    4. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107609464, November.
    5. Peng Wang & Morten Ryberg & Yi Yang & Kuishuang Feng & Sami Kara & Michael Hauschild & Wei-Qiang Chen, 2021. "Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    7. Roel Brouwers & Frederiek Schoubben & Cynthia Van Hulle, 2018. "The influence of carbon cost pass through on the link between carbon emission and corporate financial performance in the context of the European Union Emission Trading Scheme," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1422-1436, December.
    8. Tianyang Lei & Daoping Wang & Xiang Yu & Shijun Ma & Weichen Zhao & Can Cui & Jing Meng & Shu Tao & Dabo Guan, 2023. "Global iron and steel plant CO2 emissions and carbon-neutrality pathways," Nature, Nature, vol. 622(7983), pages 514-520, October.
    9. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    10. Dyckhoff, H. & Allen, K., 2001. "Measuring ecological efficiency with data envelopment analysis (DEA)," European Journal of Operational Research, Elsevier, vol. 132(2), pages 312-325, July.
    11. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    12. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thanh Ngo & Kan Wai Hong Tsui, 2022. "Estimating the confidence intervals for DEA efficiency scores of Asia-Pacific airlines," Operational Research, Springer, vol. 22(4), pages 3411-3434, September.
    2. Xiangxiang Sun & Lawrence Loh, 2019. "Sustainability Governance in China: An Analysis of Regional Ecological Efficiency," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    3. Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
    4. Carlos Barros & Pedro Garcia-del-Barrio, 2011. "Productivity drivers and market dynamics in the Spanish first division football league," Journal of Productivity Analysis, Springer, vol. 35(1), pages 5-13, February.
    5. Qingxian An & Xiangyang Tao & Bo Dai & Jinlin Li, 2020. "Modified Distance Friction Minimization Model with Undesirable Output: An Application to the Environmental Efficiency of China’s Regional Industry," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1047-1071, April.
    6. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    7. Ali Emrouznejad & Victor Podinovski & Vincent Charles & Chixiao Lu & Amir Moradi-Motlagh, 2025. "Rajiv Banker’s lasting impact on data envelopment analysis," Annals of Operations Research, Springer, vol. 351(2), pages 1225-1264, August.
    8. Rekker, Lennard & Kesina, Michaela & Mulder, Machiel, 2023. "Carbon abatement in the European chemical industry: assessing the feasibility of abatement technologies by estimating firm-level marginal abatement costs," Energy Economics, Elsevier, vol. 126(C).
    9. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    10. José Lorenzo & Isabel Sánchez, 2007. "Efficiency evaluation in municipal services: an application to the street lighting service in Spain," Journal of Productivity Analysis, Springer, vol. 27(3), pages 149-162, June.
    11. Lucio Cecchini & Francesco Romagnoli & Massimo Chiorri & Biancamaria Torquati, 2023. "Eco-Efficiency and Its Determinants: The Case of the Italian Beef Cattle Sector," Agriculture, MDPI, vol. 13(5), pages 1-18, May.
    12. Barros, Carlos Pestana & Peypoch, Nicolas, 2008. "Technical efficiency of thermoelectric power plants," Energy Economics, Elsevier, vol. 30(6), pages 3118-3127, November.
    13. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    14. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim J.S., 2024. "Can operational efficiency in the Portuguese electricity sector be improved? Yes, but..," Energy Policy, Elsevier, vol. 190(C).
    15. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    16. Kohl, Sebastian & Brunner, Jens O., 2020. "Benchmarking the benchmarks – Comparing the accuracy of Data Envelopment Analysis models in constant returns to scale settings," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1042-1057.
    17. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, January.
    18. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    19. Quintano, Claudio & Mazzocchi, Paolo & Rocca, Antonella, 2021. "Evaluation of the eco-efficiency of territorial districts with seaport economic activities," Utilities Policy, Elsevier, vol. 71(C).
    20. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the marginal abatement cost curve of CO₂ emissions in China: Provincial panel data analysis," Kiel Working Papers 1985, Kiel Institute for the World Economy (IfW Kiel).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:nhhfms:2025_023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stein Fossen (email available below). General contact details of provider: https://edirc.repec.org/data/dfnhhno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.