IDEAS home Printed from https://ideas.repec.org/p/hhs/nhhfms/2009_010.html

A simple improvement of the IV estimator for the classical errors-in-variables problem

Author

Listed:
  • Andersson, Jonas

    (Dept. of Finance and Management Science, Norwegian School of Economics and Business Administration)

  • Møen, Jarle

    (Dept. of Finance and Management Science, Norwegian School of Economics and Business Administration)

Abstract

Two measures of an error-ridden explanatory variable make it possible to solve the classical errors-in-variable problem by using one measure as an instrument for the other. It is well known that a second IV estimate can be obtained by reversing the roles of the two measures. We explore a simple estimator that is the linear combination of these two estimates, that minimizes the asymptotic mean squared error. In a Monte Carlo study we show that the gain in precision is significant compared to using only one of the original IV estimates. The proposed estimator also compares well with full information maximum likelihood under normality.

Suggested Citation

  • Andersson, Jonas & Møen, Jarle, 2009. "A simple improvement of the IV estimator for the classical errors-in-variables problem," Discussion Papers 2009/10, Norwegian School of Economics, Department of Business and Management Science.
  • Handle: RePEc:hhs:nhhfms:2009_010
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11250/163982
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erkin Diyarbakirlioglu & Marc Desban & Souad Lajili Jarjir, 2022. "Asset pricing models with measurement error problems: A new framework with Compact Genetic Algorithms," Post-Print hal-03643083, HAL.
    2. Jonas Andersson & Jarle Møen, 2016. "A Simple Improvement of the IV-estimator for the Classical Errors-in-Variables Problem," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(1), pages 113-125, February.
    3. Federico Crudu, 2017. "Errors-in-Variables Models with Many Proxies," Department of Economics University of Siena 774, Department of Economics, University of Siena.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:nhhfms:2009_010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stein Fossen (email available below). General contact details of provider: https://edirc.repec.org/data/dfnhhno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.