IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-05403632.html

A class of singular control problems with tipping points

Author

Listed:
  • Jean-Paul Décamps

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Fabien Gensbittel

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Thomas Mariotti

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS - Centre National de la Recherche Scientifique)

  • Stéphane Villeneuve

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

Tipping points define situations where a system experiences sudden and irreversible changes and are generally associated with a random level of the system below which the changes materialize. In this paper, we study a singular stochastic control problem in which the performance criterion depends on the hitting time of a random level that is not a stopping time for the reference filtration. We establish a connection between the value of the problem and the value of a singular control problem involving a diffusion and its running minimum. We prove a verification theorem and apply our results to explicitly solve a resource extraction problem where the random evolution of the resource changes when it crosses a tipping point.

Suggested Citation

  • Jean-Paul Décamps & Fabien Gensbittel & Thomas Mariotti & Stéphane Villeneuve, 2025. "A class of singular control problems with tipping points," Working Papers hal-05403632, HAL.
  • Handle: RePEc:hal:wpaper:hal-05403632
    Note: View the original document on HAL open archive server: https://hal.science/hal-05403632v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-05403632v1/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-05403632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.