Author
Listed:
- Massimo Amato
(Bocconi University [Milan, Italy])
- Sylvain Contassot-Vivier
(LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications - Inria - Institut National de Recherche en Informatique et en Automatique - CentraleSupélec - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique, UL - Université de Lorraine)
- Nazim Fatès
(MOCQUA - Designing the Future of Computational Models - Centre Inria de l'Université de Lorraine - Inria - Institut National de Recherche en Informatique et en Automatique - LORIA - FM - Department of Formal Methods - LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications - Inria - Institut National de Recherche en Informatique et en Automatique - CentraleSupélec - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications - Inria - Institut National de Recherche en Informatique et en Automatique - CentraleSupélec - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique, Centre Inria de l'Université de Lorraine - Inria - Institut National de Recherche en Informatique et en Automatique)
- Lucio Gobbi
(UNITN - Università degli Studi di Trento = University of Trento)
- Joannès Guichon
(Centre Inria de l'Université de Lorraine - Inria - Institut National de Recherche en Informatique et en Automatique, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications - Inria - Institut National de Recherche en Informatique et en Automatique - CentraleSupélec - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique, MOCQUA - Designing the Future of Computational Models - Centre Inria de l'Université de Lorraine - Inria - Institut National de Recherche en Informatique et en Automatique - LORIA - FM - Department of Formal Methods - LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications - Inria - Institut National de Recherche en Informatique et en Automatique - CentraleSupélec - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique, SIMBIOT - SIMulating and Building IOT - LORIA - NSS - Department of Networks, Systems and Services - LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications - Inria - Institut National de Recherche en Informatique et en Automatique - CentraleSupélec - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique)
Abstract
This paper introduces a novel economic, financial and algorithmic approach to improve liquidity management and reduce systemic risk in business-to-business payment networks. A temporal integral netting framework is designed to tackle the challenges posed by intercompany debt chains and delayed invoice settlements. The proposed system enables a transition from deferred gross to conditional net settlement. Utilizing a Netting Estimator and a Network Funder, the model algorithmically identifies optimal structures, such as debt trees and paths, to maximize both invoice clearing and financing efficiency. Applied to a large-scale dataset of 22 million invoices from Italian firms in 2019, our algorithm demonstrates the capacity to clear approximately 50% of total debt with a significantly reduced liquidity need. We show that under realistic assumptions, the Network Funder working capital reaches a plateau in a few months, allowing the system to work with a fixed amount of funds. Moreover, our experiments show that over 70% of participating companies experience at least 50% of debt reduction. All these observations confirm that our process is technically scalable, financially viable and systemically beneficial. We offer a tool for improving liquidity management while maintaining reasonable risk levels for the financing agent.
Suggested Citation
Massimo Amato & Sylvain Contassot-Vivier & Nazim Fatès & Lucio Gobbi & Joannès Guichon, 2025.
"Reducing B2B Liquidity Needs With Integral Netting, A Systemic Solution,"
Working Papers
hal-05348629, HAL.
Handle:
RePEc:hal:wpaper:hal-05348629
Note: View the original document on HAL open archive server: https://hal.science/hal-05348629v1
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-05348629. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.