IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04748393.html
   My bibliography  Save this paper

Mixed Markov-Perfect Equilibria in the Continuous-Time War of Attrition

Author

Listed:
  • Jean-Paul Décamps

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Thomas Mariotti

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Fabien Gensbittel

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

We prove the existence of a Markov-perfect equilibrium in randomized stopping times for a model of the war of attrition in which the underlying state variable follows a homogenous linear diffusion. We first prove that the space of Markovian randomized stopping times can be topologized as a compact absolute retract. This in turn enables us to use a powerful fixed-point theorem by Eilenberg and Montgomery [16] to prove our existence theorem. We illustrate our results with an example of a war of attrition that admits a mixed-strategy Markov-perfect equilibrium but no pure-strategy Markovperfect equilibrium.

Suggested Citation

  • Jean-Paul Décamps & Thomas Mariotti & Fabien Gensbittel, 2024. "Mixed Markov-Perfect Equilibria in the Continuous-Time War of Attrition," Working Papers hal-04748393, HAL.
  • Handle: RePEc:hal:wpaper:hal-04748393
    Note: View the original document on HAL open archive server: https://hal.science/hal-04748393v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04748393v1/document
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04748393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.