IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00601869.html
   My bibliography  Save this paper

Large Deviation Theory and the Distribution of Price Changes

Author

Listed:
  • Laurent-Emmanuel Calvet

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

  • Benoît B. Mandelbrot

    (IBM Thomas J. Watson Research Center - IBM, Department of Mathematics - Yale University [New Haven])

  • Adlai J. Fisher

    (Sauder - Sauder School of Business [British Columbia] - UBC - University of British Columbia)

Abstract

The Multifractal Model of Asset Returns ("MMAR," see Mandelbrot, Fisher, and Calvet, 1997) proposes a class of multifractal processes for the modelling of financial returns. In that paper, multifractal processes are defined by a scaling law for moments of the processes' increments over finite time intervals. In the present paper, we discuss the local behavior of multifractal processes. We employ local Holder exponents, a fundamental concept in real analysis that describes the local scaling properties of a realized path at any point in time. In contrast with the standard models of continuous time finance, multifractal processes contain a multiplicity of local Holder exponents within any finite time interval. We characterize the distribution of Holder exponents by the multifractal spectrum of the process. For a broad class of multifractal processes, this distribution can be obtained by an application of Cramer's Large Deviation Theory. In an alternative interpretation, the multifractal spectrum describes the fractal dimension of the set of points having a given local Holder exponent. Finally, we show how to obtain processes with varied spectra. This allows the applied researcher to relate an empirical estimate of the multifractal spectrum back to a particular construction of the Stochastic process.

Suggested Citation

  • Laurent-Emmanuel Calvet & Benoît B. Mandelbrot & Adlai J. Fisher, 2011. "Large Deviation Theory and the Distribution of Price Changes," Working Papers hal-00601869, HAL.
  • Handle: RePEc:hal:wpaper:hal-00601869
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00601869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.