IDEAS home Printed from https://ideas.repec.org/p/hal/pseptp/halshs-05163046.html
   My bibliography  Save this paper

Behavioral, computational and self-reported measures of reward and punishment sensitivity as predictors of mental health characteristics

Author

Listed:
  • Stefano Vrizzi

    (ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres, LNC2 - Laboratoire de Neurosciences Cognitives & Computationnelles - DEC - Département d'Etudes Cognitives - ENS-PSL - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - INSERM - Institut National de la Santé et de la Recherche Médicale)

  • Anis Najar

    (ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres, LNC2 - Laboratoire de Neurosciences Cognitives & Computationnelles - DEC - Département d'Etudes Cognitives - ENS-PSL - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - INSERM - Institut National de la Santé et de la Recherche Médicale)

  • Cédric Lemogne

    (Hôpital Hôtel-Dieu [Paris] - AP-HP - Assistance publique - Hôpitaux de Paris (AP-HP), CRESS (U1153 / UMR_A 1125) - Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques - INSERM - Institut National de la Santé et de la Recherche Médicale - UPCité - Université Paris Cité - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Stefano Palminteri

    (ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres, LNC2 - Laboratoire de Neurosciences Cognitives & Computationnelles - DEC - Département d'Etudes Cognitives - ENS-PSL - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - INSERM - Institut National de la Santé et de la Recherche Médicale)

  • Mael Lebreton

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - ENPC - École nationale des ponts et chaussées - IP Paris - Institut Polytechnique de Paris, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - ENPC - École nationale des ponts et chaussées - IP Paris - Institut Polytechnique de Paris, CISA - Swiss Center for Affective Sciences - UNIGE - Université de Genève = University of Geneva)

Abstract

Computational psychiatry proposes that behavioral task-derived computational measures can improve our understanding, diagnosis and treatment of neuropsychiatric disorders. However, recent meta-analyses in cognitive psychology suggest that behavioral and computational measures are less stable than self-reported surveys as assessed by test–retest correlations. If extended to mental health measures, this poses a challenge to the computational psychiatry agenda. To evaluate this challenge, we collected cross-sectional data from participants who performed a popular reinforcement-learning task twice (~5 months apart). Leveraging a well-validated neuro-computational framework, we compared the reliability of behavioral measures, computational parameters and psychological and mental health questionnaires. Despite the remarkable replicability of behavioral and computational measures averaged at the population level, their test–retest reliability at the individual level was surprisingly low. Furthermore, behavioral measures were essentially correlated only among themselves and generally unrelated to mental health symptoms. Overall, these findings challenge the translational potential of computational approaches for precision psychiatry.

Suggested Citation

  • Stefano Vrizzi & Anis Najar & Cédric Lemogne & Stefano Palminteri & Mael Lebreton, 2025. "Behavioral, computational and self-reported measures of reward and punishment sensitivity as predictors of mental health characteristics," PSE-Ecole d'économie de Paris (Postprint) halshs-05163046, HAL.
  • Handle: RePEc:hal:pseptp:halshs-05163046
    DOI: 10.1038/s44220-025-00427-1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:pseptp:halshs-05163046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Caroline Bauer (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.