IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-05439784.html

Evaluation et prévision des coûts économique des risques de cybersécurité à l'aide de l'intelligence artificielle (ANALYSE EN DONNE DE PANEL)

Author

Listed:
  • Mohammed-Amine Bouhbouch

    (Economist Researcher (Holder of a Postgraduate Degree in Economics and Public Policy Evaluation from Mohamed V University, Rabat Agdal, Morocco) Doctoral Researcher / DBA Student EPF Engineering School, Paris, France)

Abstract

Résumé La numérisation rapide des sociétés, combinée à la multiplication et à la sophistication croissante des cyberincidents, renforce la nécessité de prioriser la cybersécurité dans les stratégies d'investissement des acteurs économiques. Un défi majeur demeure toutefois : l'absence de clarté concernant les retombées économiques des investissements en cybersécurité et la compréhension limitée de l'impact réel des cyberincidents sur la performance économique. Cette étude synthétise les résultats empiriques relatifs aux économiques directs et indirects des cyberincidents et souligne les limites méthodologiques des approches d'évaluation du risque. À partir de données de panel couvrant 10 pays sur la période 2005-2024 (200 observations), L'analyse mobilise les Moindres Carrés Ordinaires (MCO), les effets fixes et l'approche par variables instrumentales (VI) afin d'estimer l'impact économiques des cyberincidents. Les résultats révèlent une forte hétérogénéité des coûts et des estimations souvent imprécises en particulier pour les effets indirects tels que les pertes de productivité et les atteintes à la réputation. La conclusion principale est que la protection efficace du cyberespace nécessite une estimation exhaustive et rigoureuse de l'ensemble des coûts économiques des cyberincidents, ce qui peut être amélioré grâce à des modèles prédictifs fondés sur l'intelligence artificielle et une collecte de données systématique. Mots clés : incidents de cybersécurité, pertes économiques, IA, coûts directs, coûts indirects Abstract The rapide digitalization of societies, coupled with the increasing frequency and sophistication of cyber incidents, has amplified the need for prioritizing cybersecurity in the investment agendas of economics actors, particularly governments and firms. However, a major challenge in mainstreaming cybersecurity investments lies in the unclear returns and the poorly understood link between cyber incidents and economic performance. This literature survey synthesizes empirical studies on both the direct and indirect costs of cyber incidents, highlighting methodological issues in risk-based approaches that could lead to misinformed decision-making. Using panel data covering 10 countries, over the period 2005-2024, totaling 200 observations, this study applies econometric evaluation techniques such as Ordinary least squares (OLS), Fixed effects (FE), and instrumental variables (IV) approaches to assess the economic impact of cyber incidents. First, it identifies the wide variation and often unfounded estimates of the economic costs, including significant indirect effects. The study concludes that accurately protecting cyberspace requires policymakers and stakeholders to understand the comprehensive economic costs of cyber incidents, which can be achieved through targeted research and systematic data collection efforts. The study concludes that effectively protecting cyberspace requires policymakers and stakeholders to gain a comprehensive understanding of the full economic costs associated with cyber incidents, which can be achieved through AI-based predictive models and systematic data collection efforts. Keywords: Cybersecurity incidents, economic loss, defense, IA, direct costs, indirect costs.

Suggested Citation

  • Mohammed-Amine Bouhbouch, 2025. "Evaluation et prévision des coûts économique des risques de cybersécurité à l'aide de l'intelligence artificielle (ANALYSE EN DONNE DE PANEL)," Post-Print hal-05439784, HAL.
  • Handle: RePEc:hal:journl:hal-05439784
    DOI: 10.5281/zenodo.18109868
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05439784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.