Author
Listed:
- Alain Berlinet
(I3M - Institut de Mathématiques et de Modélisation de Montpellier - UM2 - Université Montpellier 2 - Sciences et Techniques - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique, BME - Budapest University of Technology and Economics [Budapest])
- Christian Francq
(CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - GENES - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, IP Paris - Institut Polytechnique de Paris)
Abstract
Bartlett's formula is widely used in time series analysis to provide estimates of the asymptotic covariance between sample autocovariances. However, it is derived under precise assumptions (namely linearity of the underlying process and vanishing of its fourth‐order cumulants) and effectiv e computations show that the value given by this formula can deviate markedly from the true asymptotic covariance when the requirements on the underlying process are not satisfied. This is the case for a large class of models, for instance bilinear and autoregressive conditionally heteroscedastic processes. For these reasons we investigate the behaviour of smoothed empirical estimates of the covariance between two sample autocovariance s. We prove L 2 and strong consistency for strongly mixing stationary processes and define for the covariance matrix of a vector of sample autocovariances a consistent estimate which is a non‐negative definite matrix. The choice of the parameters is discussed, applications are given and comparisons are made through a simulation study
Suggested Citation
Alain Berlinet & Christian Francq, 2001.
"On Bartlett’s Formula for Non‐linear Processes,"
Post-Print
hal-05431305, HAL.
Handle:
RePEc:hal:journl:hal-05431305
DOI: 10.1111/1467-9892.00067
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05431305. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.