Author
Listed:
- Christian Francq
(CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - GENES - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, IP Paris - Institut Polytechnique de Paris)
- Jean-Michel Zakoïan
(LFA - Laboratoire de Finance Assurance - Centre de Recherche en Économie et Statistique (CREST) - GENES - Groupe des Écoles Nationales d'Économie et Statistique, EQUIPPE - Economie Quantitative, Intégration, Politiques Publiques et Econométrie - Université de Lille, Sciences et Technologies - Université de Lille, Sciences Humaines et Sociales - PRES Université Lille Nord de France - Université de Lille, Droit et Santé)
Abstract
Summary In conditionally heteroscedastic models, the optimal prediction of powers, or logarithms, of the absolute value has a simple expression in terms of the volatility and an expectation involving the independent process. A natural procedure for estimating this prediction is to estimate the volatility in the first step, for instance by Gaussian quasi-maximum-likelihood or by least absolute deviations, and to use empirical means based on rescaled innovations to estimate the expectation in the second step. The paper proposes an alternative one-step procedure, based on an appropriate non-Gaussian quasi-maximum-likelihood estimator, and establishes the asymptotic properties of the two approaches. Asymptotic comparisons and numerical experiments show that the differences in accuracy can be important, depending on the prediction problem and the innovations distribution. An application to indices of major stock exchanges is given.
Suggested Citation
Christian Francq & Jean-Michel Zakoïan, 2013.
"Optimal Predictions of Powers of Conditionally Heteroscedastic Processes,"
Post-Print
hal-05417520, HAL.
Handle:
RePEc:hal:journl:hal-05417520
DOI: 10.1111/j.1467-9868.2012.01045.x
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05417520. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.