IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-05417334.html
   My bibliography  Save this paper

Poisson QMLE of Count Time Series Models

Author

Listed:
  • Ali Ahmad

    (CREATIS - Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - INSA Lyon - Institut National des Sciences Appliquées de Lyon - Université de Lyon - INSA - Institut National des Sciences Appliquées - UJM - Université Jean Monnet - Saint-Étienne - INSERM - Institut National de la Santé et de la Recherche Médicale - CNRS - Centre National de la Recherche Scientifique, Université Lille 3 (EQUIPPE))

  • Christian Francq

    (CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - GENES - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, IP Paris - Institut Polytechnique de Paris, Université Lille 3 (EQUIPPE))

Abstract

Regularity conditions are given for the consistency of the Poisson quasi‐maximum likelihood estimator of the conditional mean parameter of a count time series model. The asymptotic distribution of the estimator is studied when the parameter belongs to the interior of the parameter space and when it lies at the boundary. Tests for the significance of the parameters and for constant conditional mean are deduced. Applications to specific integer‐valued autoregressive (INAR) and integer‐valued generalized autoregressive conditional heteroscedasticity (INGARCH) models are considered. Numerical illustrations, Monte Carlo simulations and real data series are provided.

Suggested Citation

  • Ali Ahmad & Christian Francq, 2015. "Poisson QMLE of Count Time Series Models," Post-Print hal-05417334, HAL.
  • Handle: RePEc:hal:journl:hal-05417334
    DOI: 10.1111/jtsa.12167
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05417334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.