Author
Abstract
Résumé Cette étude explore les défis et les opportunités de l'implémentation de modèles prédictifs basés sur l'IA et le Big Data dans les supply chains d'entreprises marocaines. Une approche qualitative a été adoptée, utilisant des entretiens semi-directifs avec cinq responsables de la grande distribution, de l'industrie et des services. Les résultats révèlent des motivations sectorielles distinctes : la grande distribution se concentre sur la réduction des ruptures de stock, l'industrie sur l'optimisation des coûts, et les services sur l'amélioration de l'expérience client. Les bénéfices perçus incluent une amélioration significative de la précision des prévisions et une optimisation des coûts. Cependant, des défis majeurs persistent, notamment la qualité des données, la résistance au changement et le déficit de compétences. L'étude souligne l'importance d'une approche socio-technique, où la réussite dépend de l'articulation entre dimensions techniques et humaines. Ces résultats offrent des insights précieux pour les praticiens et contribuent à la littérature académique sur l'implémentation de l'IA dans les supply chains des économies émergentes. Mots clés : Intelligence artificielle, Big Data, supply chain, modèles prédictifs, entreprises marocaines. Abstract This study explores the challenges and opportunities of implementing predictive models based on AI and Big Data in the supply chains of Moroccan companies. A qualitative approach was adopted, using semi-structured interviews with five managers from the retail, industrial, and service sectors. The results reveal distinct sector-specific motivations: retail focuses on reducing stock-outs, industry on cost optimization, and services on improving customer experience. Perceived benefits include a significant improvement in forecast accuracy and cost optimization. However, major challenges persist, notably data quality, resistance to change, and skills gap. The study underscores the importance of a socio-technical approach, where success depends on the alignment between technical and human dimensions. These results provide valuable insights for practitioners and contribute to the academic literature on the implementation of AI in the supply chains of emerging economies. Keywords : Artificial intelligence, Big Data, supply chain, predictive models, Moroccan companies.
Suggested Citation
Sami Elbadri & Rachid Elbadri & Redouane Oubal & Mounia Cherkaoui, 2025.
"Optimisation de la supply chain par les modèles prédictifs : Regards croisés de managers marocains sur l'implémentation de l'IA et du Big Data,"
Post-Print
hal-05361808, HAL.
Handle:
RePEc:hal:journl:hal-05361808
DOI: 10.5281/zenodo.17572847
Note: View the original document on HAL open archive server: https://hal.science/hal-05361808v1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05361808. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.