IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-05322436.html
   My bibliography  Save this paper

Latent class models with persistence in regime changes: a distributed lag analysis
[Modèles de classes latentes avec persistance dans les changements de régime : une analyse des retards distribués]

Author

Listed:
  • Luis Orea

    (Department of Economics - Universidad de Oviedo = University of Oviedo)

  • K Hervé Dakpo

    (UMR PSAE - Paris-Saclay Applied Economics - AgroParisTech - Université Paris-Saclay - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

One of the approaches to address the issue of production heterogeneity is to use latent class models. In most of these models, class membership either does not vary or might change freely over time. While the first assumption becomes increasingly untenable as the number of observed periods becomes larger, the second assumption is difficult to justify if important factors exist that prevent firms from switching classes back and forth several times. The present paper aims to develop a latent class model that allows firms to change from one class to another over time while permitting some degree of persistence in class membership. Our model can be used in settings with more than two classes and estimated using unbalanced panel datasets. An application of the empirical model in the context of dairy farm intensification is also provided. We find evidence of moderate resistance to replacing one milk production system with another in this sector, especially for small farms. Despite this, the standard latent class model performs reasonably well in terms of class-membership probabilities and temporal patterns.

Suggested Citation

  • Luis Orea & K Hervé Dakpo, 2025. "Latent class models with persistence in regime changes: a distributed lag analysis [Modèles de classes latentes avec persistance dans les changements de régime : une analyse des retards distribués]," Post-Print hal-05322436, HAL.
  • Handle: RePEc:hal:journl:hal-05322436
    DOI: 10.1007/s11123-025-00782-2
    Note: View the original document on HAL open archive server: https://hal.inrae.fr/hal-05322436v1
    as

    Download full text from publisher

    File URL: https://hal.inrae.fr/hal-05322436v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s11123-025-00782-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    2. Beaudry, Paul & Koop, Gary, 1993. "Do recessions permanently change output?," Journal of Monetary Economics, Elsevier, vol. 31(2), pages 149-163, April.
    3. Agrell, Per J. & Brea-Solís, Humberto, 2017. "Capturing heterogeneity in electricity distribution operations: A critical review of latent class modelling," Energy Policy, Elsevier, vol. 104(C), pages 361-372.
    4. Cliff Huang & Tai-Hsin Huang & Nan-Hung Liu, 2014. "A new approach to estimating the metafrontier production function based on a stochastic frontier framework," Journal of Productivity Analysis, Springer, vol. 42(3), pages 241-254, December.
    5. Efthymios G. Tsionas & Subal C. Kumbhakar, 2004. "Markov switching stochastic frontier model," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 398-425, December.
    6. Laure Latruffe & Andreas Niedermayr & Yann Desjeux & K Herve Dakpo & Kassoum Ayouba & Lena Schaller & Jochen Kantelhardt & Yan Jin & Kevin Kilcline & Mary Ryan & Cathal O’Donoghue, 2023. "Identifying and assessing intensive and extensive technologies in European dairy farming," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1482-1519.
    7. Battisti, Michele & Parmeter, Christopher F., 2013. "Clustering and polarization in the distribution of output: A multivariate perspective," Journal of Macroeconomics, Elsevier, vol. 35(C), pages 144-162.
    8. Alberto Gude & Inmaculada Álvarez & Luis Orea, 2018. "Heterogeneous spillovers among Spanish provinces: a generalized spatial stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 50(3), pages 155-173, December.
    9. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    10. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    11. Malikov, Emir & Sun, Yiguo, 2017. "Semiparametric estimation and testing of smooth coefficient spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 199(1), pages 12-34.
    12. Mustafa U. Karakaplan & Levent Kutlu, 2017. "Handling Endogeneity in Stochastic Frontier Analysis," Economics Bulletin, AccessEcon, vol. 37(2), pages 889-901.
    13. Antonio Alvarez & Julio del Corral, 2010. "Identifying different technologies using a latent class model: extensive versus intensive dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(2), pages 231-250, June.
    14. Doris Läpple & Garth Holloway & Donald J Lacombe & Cathal O’Donoghue, 2017. "Sustainable technology adoption: a spatial analysis of the Irish Dairy Sector," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(5), pages 810-835.
    15. Luis Orea & José A. Pérez‐Méndez & Inmaculada Álvarez, 2024. "Does land consolidation promote livestock production and combat rural depopulation in northern Spain?," Journal of Agricultural Economics, Wiley Blackwell, vol. 75(3), pages 847-868, September.
    16. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    17. Garcia-Covarrubias, Luis & Läpple, Doris & Dillon, Emma & Thorne, Fiona, 2024. "The role of hired labour on technical efficiency in an expanding dairy sector: The case of Ireland," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 68(02), January.
    18. Alvarez, Antonio & Arias, Carlos, 2015. "Effects of switching between production systems in dairy farming," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 4(01), pages 1-16, April.
    19. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    20. Subal Kumbhakar & Efthymios Tsionas & Timo Sipiläinen, 2009. "Joint estimation of technology choice and technical efficiency: an application to organic and conventional dairy farming," Journal of Productivity Analysis, Springer, vol. 31(3), pages 151-161, June.
    21. Luis Orea & Subal C. Kumbhakar, 2004. "Efficiency measurement using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 29(1), pages 169-183, January.
    22. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2021. "Latent Class Modelling for a Robust Assessment of Productivity: Application to French Grazing Livestock Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(3), pages 760-781, September.
    23. Johannes Sauer & Catherine J. Morrison Paul, 2013. "The empirical identification of heterogeneous technologies and technical change," Applied Economics, Taylor & Francis Journals, vol. 45(11), pages 1461-1479, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2022. "Modeling heterogeneous technologies in the presence of sample selection: The case of dairy farms and the adoption of agri‐environmental schemes in France," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 422-438, May.
    2. Laure Latruffe & Andreas Niedermayr & Yann Desjeux & K Herve Dakpo & Kassoum Ayouba & Lena Schaller & Jochen Kantelhardt & Yan Jin & Kevin Kilcline & Mary Ryan & Cathal O’Donoghue, 2023. "Identifying and assessing intensive and extensive technologies in European dairy farming," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1482-1519.
    3. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    4. Amer Ait Sidhoum & K Hervé Dakpo & Laure Latruffe, 2022. "Trade-offs between economic, environmental and social sustainability on farms using a latent class frontier efficiency model: Evidence for Spanish crop farms," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-17, January.
    5. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2024. "Measuring productivity when technology is heterogeneous using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 67(5), pages 2175-2205, November.
    6. Ahimbisibwe, Vianny & Zhunusova, Eliza & Kassa, Habtemariam & Günter, Sven, 2024. "Technical efficiency drivers of farmer-led restoration strategies, and how substantial is the unrealised potential for farm output?," Agricultural Systems, Elsevier, vol. 213(C).
    7. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2021. "Latent Class Modelling for a Robust Assessment of Productivity: Application to French Grazing Livestock Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(3), pages 760-781, September.
    8. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    9. Fertő, Imre & Baráth, Lajos, 2013. "Heterogenitás és technikai hatékonyság - a magyar specializált szántóföldi növénytermesztő üzemek esete [Heterogeneity and technical efficiency - the case of Hungarys specialized arable crop produc," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 650-669.
    10. Alvarez, Antonio & del Corral, Julio & Tauer, Loren W., 2012. "Modeling Unobserved Heterogeneity in New York Dairy Farms: One-Stage versus Two-Stage Models," Agricultural and Resource Economics Review, Cambridge University Press, vol. 41(3), pages 275-285, December.
    11. Garcia, Luis & Laepple, Doris & Dillon, Emma & Thorne, Fiona, 2020. "The role of hired labor in transient and persistent technical efficiency on Irish dairy farms," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304395, Agricultural and Applied Economics Association.
    12. Billé, AG & Salvioni, C. & Benedetti, R., 2015. "Spatial Heterogeneity In Production Functions Models," 150th Seminar, October 22-23, 2015, Edinburgh, Scotland 212662, European Association of Agricultural Economists.
    13. Ioannis Skevas, 2019. "A Hierarchical Stochastic Frontier Model for Efficiency Measurement Under Technology Heterogeneity," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 513-524, September.
    14. Bos, J.W.B. & Economidou, C. & Koetter, M. & Kolari, J.W., 2010. "Do all countries grow alike?," Journal of Development Economics, Elsevier, vol. 91(1), pages 113-127, January.
    15. Mamonov Mikhail E. & Parmeter Christopher F. & Prokhorov Artem B., 2022. "Dependence modeling in stochastic frontier analysis," Dependence Modeling, De Gruyter, vol. 10(1), pages 123-144, January.
    16. Lungelo P. Cele & Thia Hennessy & Fiona Thorne, 2023. "Regional technical efficiency rankings and their determinants in the Irish dairy industry: A stochastic meta‐frontier analysis," Agribusiness, John Wiley & Sons, Ltd., vol. 39(3), pages 727-743, July.
    17. Sauer, J. & Morrison-Paul, C., . "Technologies and Localized Technical Change," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 46.
    18. Sickles, Robin C. & Hao, Jiaqi & Shang, Chenjun, 2015. "Panel Data and Productivity Measurement," Working Papers 15-018, Rice University, Department of Economics.
    19. Juan Cabas Monje & Bouali Guesmi & Amer Ait Sidhoum & José María Gil, 2023. "Measuring technical efficiency of Spanish pig farming: Quantile stochastic frontier approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(4), pages 688-703, October.
    20. William C. Horrace & Hyunseok Jung, 2018. "Stochastic frontier models with network selectivity," Journal of Productivity Analysis, Springer, vol. 50(3), pages 101-116, December.

    More about this item

    Keywords

    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05322436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.