IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-05294002.html
   My bibliography  Save this paper

Why Virtual Mileage Can Threaten Vehicle-to-Grid

Author

Listed:
  • Pierre Dumont

    (GeePs - Laboratoire Génie électrique et électronique de Paris - CentraleSupélec - SU - Sorbonne Université - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique, Stellantis (Centre technique de Carrières-sous-Poissy))

  • Lorenzo Nicoletti

    (Stellantis (Centre technique de Carrières-sous-Poissy))

  • Marc Petit

    (GeePs - Laboratoire Génie électrique et électronique de Paris - CentraleSupélec - SU - Sorbonne Université - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique)

  • Damien-Pierre Sainflou

    (Stellantis (Centre technique de Carrières-sous-Poissy))

Abstract

Vehicle-to-grid (V2G) technology is gaining interest, particularly for electricity trading using electric vehicle (EV) batteries. This study focuses on the economic impact of V2Ginduced vehicle degradation. Unlike traditional approaches that estimate costs based on battery capacity loss, upcoming "virtual mileage" regulations aim to provide a more tangible metric. Virtual mileage, deduced from the energy reinjected onto the grid by the vehicle, is meant to represent a similar wear as real mileage. However, it should be noted that this metric is flawed as it tends to overestimate vehicle degradation since it tacitly includes wear on components that are not used during V2G (for instance: tires, brakes), and overlooks other factors like battery calendar ageing: for example, an EV with high virtual mileage could retain better battery health than one stored at full charge. Virtual mileage could hence significantly affect EV residual value, around ~1 c€ per virtual kilometre in order of magnitude, translating to ~0.05 € per discharged kWh. This depreciation would pose a substantial barrier to V2G profitability. Using simulations of EVs in the French day-ahead electricity market for 2019, the study finds that accounting for devaluation reduces average annual V2G benefits to just 6.96 €/EV, compared to 29.2 €/EV without it. The paper highlights the aforementioned limitations to virtual mileage and advocates alternative metrics such as the state-of-health to assess vehicle degradation, aiming to enhance the feasibility of V2G.

Suggested Citation

  • Pierre Dumont & Lorenzo Nicoletti & Marc Petit & Damien-Pierre Sainflou, 2025. "Why Virtual Mileage Can Threaten Vehicle-to-Grid," Post-Print hal-05294002, HAL.
  • Handle: RePEc:hal:journl:hal-05294002
    Note: View the original document on HAL open archive server: https://hal.science/hal-05294002v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-05294002v1/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Sekyung & Han, Soohee & Aki, Hirohisa, 2014. "A practical battery wear model for electric vehicle charging applications," Applied Energy, Elsevier, vol. 113(C), pages 1100-1108.
    2. Marongiu, Andrea & Roscher, Marco & Sauer, Dirk Uwe, 2015. "Influence of the vehicle-to-grid strategy on the aging behavior of lithium battery electric vehicles," Applied Energy, Elsevier, vol. 137(C), pages 899-912.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali M. Eltamaly, 2023. "Smart Decentralized Electric Vehicle Aggregators for Optimal Dispatch Technologies," Energies, MDPI, vol. 16(24), pages 1-27, December.
    2. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    3. Falahati, Saber & Taher, Seyed Abbas & Shahidehpour, Mohammad, 2016. "Grid frequency control with electric vehicles by using of an optimized fuzzy controller," Applied Energy, Elsevier, vol. 178(C), pages 918-928.
    4. McCluskey, Jac & Druitt, Tom & Larkin, Charles, 2025. "Sustainability in transit: Assessing the economic case for electric bus adoption in the UK," Transport Policy, Elsevier, vol. 162(C), pages 493-508.
    5. Petit, Martin & Prada, Eric & Sauvant-Moynot, Valérie, 2016. "Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime," Applied Energy, Elsevier, vol. 172(C), pages 398-407.
    6. Yohwan Choi & Hongseok Kim, 2016. "Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost," Energies, MDPI, vol. 9(6), pages 1-19, June.
    7. Kuk Yeol Bae & Han Seung Jang & Bang Chul Jung & Dan Keun Sung, 2019. "Effect of Prediction Error of Machine Learning Schemes on Photovoltaic Power Trading Based on Energy Storage Systems," Energies, MDPI, vol. 12(7), pages 1-20, April.
    8. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    9. Xingtao Liu & Chaoyi Zheng & Ji Wu & Jinhao Meng & Daniel-Ioan Stroe & Jiajia Chen, 2020. "An Improved State of Charge and State of Power Estimation Method Based on Genetic Particle Filter for Lithium-ion Batteries," Energies, MDPI, vol. 13(2), pages 1-16, January.
    10. Song, Yuguang & Xia, Mingchao & Yang, Liu & Chen, Qifang & Su, Su, 2023. "Multi-granularity source-load-storage cooperative dispatch based on combined robust optimization and stochastic optimization for a highway service area micro-energy grid," Renewable Energy, Elsevier, vol. 205(C), pages 747-762.
    11. Yu, Kaize & Yan, Pengyu & Liu, Yang & Chen, Zhibin & Kong, Xiang T.R., 2025. "Battery degradation mitigation-oriented strategy for optimizing e-hailing electric vehicle operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
    12. Lam, Dylon Hao Cheng & Lim, Yun Seng & Wong, Jianhui & Allahham, Adib & Patsios, Charalampos, 2023. "A novel characteristic-based degradation model of Li-ion batteries for maximum financial benefits of energy storage system during peak demand reductions," Applied Energy, Elsevier, vol. 343(C).
    13. Evgeny Nefedov & Seppo Sierla & Valeriy Vyatkin, 2018. "Internet of Energy Approach for Sustainable Use of Electric Vehicles as Energy Storage of Prosumer Buildings," Energies, MDPI, vol. 11(8), pages 1-18, August.
    14. Mathieu, Romain & Baghdadi, Issam & Briat, Olivier & Gyan, Philippe & Vinassa, Jean-Michel, 2017. "D-optimal design of experiments applied to lithium battery for ageing model calibration," Energy, Elsevier, vol. 141(C), pages 2108-2119.
    15. Samende, Cephas & Cao, Jun & Fan, Zhong, 2022. "Multi-agent deep deterministic policy gradient algorithm for peer-to-peer energy trading considering distribution network constraints," Applied Energy, Elsevier, vol. 317(C).
    16. Jian, Linni & Zheng, Yanchong & Xiao, Xinping & Chan, C.C., 2015. "Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid," Applied Energy, Elsevier, vol. 146(C), pages 150-161.
    17. Cephas Samende & Zhong Fan & Jun Cao & Renzo Fabián & Gregory N. Baltas & Pedro Rodriguez, 2023. "Battery and Hydrogen Energy Storage Control in a Smart Energy Network with Flexible Energy Demand Using Deep Reinforcement Learning," Energies, MDPI, vol. 16(19), pages 1-20, September.
    18. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Zaman, Forhad & Guerrero, Josep M., 2019. "Energy scheduling of community microgrid with battery cost using particle swarm optimisation," Applied Energy, Elsevier, vol. 254(C).
    19. Li, Zichen & Xia, Yanghong & Bo, Yaolong & Wei, Wei, 2024. "Optimal planning for electricity-hydrogen integrated energy system considering multiple timescale operations and representative time-period selection," Applied Energy, Elsevier, vol. 362(C).
    20. George Baure & Matthieu Dubarry, 2020. "Durability and Reliability of EV Batteries under Electric Utility Grid Operations: Impact of Frequency Regulation Usage on Cell Degradation," Energies, MDPI, vol. 13(10), pages 1-11, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05294002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.