IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-05243879.html
   My bibliography  Save this paper

Targeting Social Assistance Beneficiaries Using Machine Learning: A Poverty Probability-Based Approach Ciblage des bénéficiaires de l'aide sociale par l'apprentissage automatique: Une approche fondée sur la probabilité de pauvreté

Author

Listed:
  • Chaymae Sahraoui

    (UH2C - Université Hassan II de Casablanca = University of Hassan II Casablanca = جامعة الحسن الثاني (ar))

  • Tarek Zari

    (UH2C - Université Hassan II de Casablanca = University of Hassan II Casablanca = جامعة الحسن الثاني (ar))

Abstract

In a context where social inequalities are deepening and public resources are becoming increasingly scarce; the fair and effective identification of social assistance beneficiaries has become a central issue. Traditional targeting methods, such as categorical eligibility or proxy means testing, are now showing their limits, frequently producing inclusion and exclusion errors.This study relies on a synthetic dataset of 12,600 individuals described by 59 socio-economic variables, ranging from demographic characteristics and education level access to financial and digital services. Three supervised learning models are compared: logistic regression, Random Forest, and XGBoost. The results reveal that tree-based models outperform logistic regression, particularly in reducing exclusion errors, which are especially critical in social policy contexts.The analysis of key variables highlights the decisive role of education levels, place of residence (urban/rural), and access to digital and financial services. These findings confirm the need for a multidimensional approach to poverty that goes beyond purely monetary criteria. Finally, the study emphasizes the ethical challenges raised using algorithms: transparency, bias reduction, and institutional accountability emerge as essential conditions for legitimizing their integration into social protection and for contributing to more inclusive and equitable systems

Suggested Citation

  • Chaymae Sahraoui & Tarek Zari, 2025. "Targeting Social Assistance Beneficiaries Using Machine Learning: A Poverty Probability-Based Approach Ciblage des bénéficiaires de l'aide sociale par l'apprentissage automatique: Une approche fondée ," Post-Print hal-05243879, HAL.
  • Handle: RePEc:hal:journl:hal-05243879
    DOI: 10.5281/zenodo.17074353
    Note: View the original document on HAL open archive server: https://hal.science/hal-05243879v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-05243879v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.5281/zenodo.17074353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    2. Veale, Michael & Binns, Reuben, 2017. "Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data," SocArXiv ustxg, Center for Open Science.
    3. Rema Hanna & Benjamin A. Olken, 2018. "Universal Basic Incomes versus Targeted Transfers: Anti-Poverty Programs in Developing Countries," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 201-226, Fall.
    4. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    5. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    6. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    7. repec:osf:socarx:ustxg_v1 is not listed on IDEAS
    8. Aline Coudouel & Kathleen Beegle & Emma Monsalve, 2018. "Realizing the Full Potential of Social Safety Nets in Africa [Les filets sociaux en Afrique comment realiser pleinement leur potential?]," World Bank Publications - Books, The World Bank Group, number 29789, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    2. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
    3. Daniel Boller & Michael Lechner & Gabriel Okasa, 2025. "The effect of sport in online dating: evidence from causal machine learning," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-13, December.
    4. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    5. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    6. Zhexiao Lin & Fang Han, 2022. "On regression-adjusted imputation estimators of the average treatment effect," Papers 2212.05424, arXiv.org, revised Jan 2023.
    7. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    8. Labib Shami & Teddy Lazebnik, 2024. "Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1459-1476, April.
    9. Ay, Jean-Sauveur & Le Gallo, Julie, 2021. "The Signaling Values of Nested Wine Names," Working Papers 321851, American Association of Wine Economists.
    10. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    11. Chen, Ruoyu & Jiang, Hanchen & Quintero, Luis E., 2023. "Measuring the value of rent stabilization and understanding its implications for racial inequality: Evidence from New York City," Regional Science and Urban Economics, Elsevier, vol. 103(C).
    12. Dang, Hai-Anh & Carleto, Gero & Gourlay, Sydney & Abanokova, Kseniya, 2023. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," 2023 Annual Meeting, July 23-25, Washington D.C. 335648, Agricultural and Applied Economics Association.
    13. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    14. Ballestar, María Teresa & Mir, Miguel Cuerdo & Pedrera, Luis Miguel Doncel & Sainz, Jorge, 2024. "Effectiveness of tutoring at school: A machine learning evaluation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    15. Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," MPRA Paper 110703, University Library of Munich, Germany.
    16. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    18. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    19. Tarsia, Romano, 2024. "Heterogeneous effects of weather shocks on firm economic performance," LSE Research Online Documents on Economics 124251, London School of Economics and Political Science, LSE Library.
    20. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05243879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.