IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-05238452.html
   My bibliography  Save this paper

Artificial intelligence applications in fake review detection: Bibliometric analysis and future research directions

Author

Listed:
  • Sami Ben Jabeur

    (UR CONFLUENCE : Sciences et Humanités (EA 1598) - UCLy - UCLy (Lyon Catholic University), ESDES - ESDES, Lyon Business School - UCLy - UCLy - UCLy (Lyon Catholic University))

  • Houssein Ballouk
  • Wissal Ben Arfi
  • Jena-Michel Sahut

Abstract

Artificial intelligence (AI) and machine learning (ML) are emergent tools for fake review detection. This study provides a comprehensive overview of AI applications in fake review detection, using a hybrid integrated review and by combining bibliometric analysis with a framework-based review: the 4Ws (What, Where, Why, and How). We draw on the thematic structure of AI and ML research in fake review detection for the 2012–2021 period by conducting bibliometric coupling, keyword co-occurrence, and conceptual thematic, social network, and cluster-based content analyses of scientific articles. The findings indicate that field research has thus far concentrated on three overarching groups of fake review detection: (a) word of mouth, quality, reputation, and price; (b) classification, moderating role, intention, and analytics; and (c) impact and participation. This article provides researchers, companies and policymakers with insights into how AI can detect fraudulent reviews and drives further research on the adequate use of advanced AI techniques in fake review detection.

Suggested Citation

  • Sami Ben Jabeur & Houssein Ballouk & Wissal Ben Arfi & Jena-Michel Sahut, 2023. "Artificial intelligence applications in fake review detection: Bibliometric analysis and future research directions," Post-Print hal-05238452, HAL.
  • Handle: RePEc:hal:journl:hal-05238452
    DOI: 10.1016/j.jbusres.2022.113631
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05238452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.