Author
Abstract
Pandemic events, particularly the current Covid-19 disease, compel organisations to re-formulate their day-to-day operations for achieving various business goals such as cost reduction. Unfortunately, small and medium enterprises (SMEs) making up more than 95% of all businesses is the hardest hit sector. This has urged SMEs to rethink their operations to survive through pandemic events. One key area is the use of new technologies pertaining to digital transformation for optimizing pandemic preparedness and minimizing business disruptions. This is especially true from the perspective of digitizing asset management methodologies in the era of Industry 4.0 under pandemic environments. Incidentally, human-centric approaches have become increasingly important in predictive maintenance through the exploitation of digital tools, especially when the workforce is increasingly interacting with new technologies such as Artificial Intelligence (AI) and Internet-of-Things devices for condition monitoring in equipment maintenance services. In this research, we propose an AI-based human-centric decision support framework for predictive maintenance in asset management, which can facilitate prompt and informed decision-making under pandemic environments. For predictive maintenance of complex systems, an enhanced trust-based ensemble model is introduced to undertake imbalanced data issues. A human-in-the-loop mechanism is incorporated to exploit the tacit knowledge elucidated from subject matter experts for providing decision support. Evaluations with both benchmark and real-world databases demonstrate the effectiveness of the proposed framework for addressing imbalanced data issues in predictive maintenance tasks. In the real-world case study, an accuracy rate of 82% is achieved, which indicates the potential of the proposed framework in assisting business sustainability pertaining to asset predictive maintenance under pandemic environments.
Suggested Citation
Jacky Chen & Chee Peng Lim & Kim Hua Tan & Kannan Govindan & Ajay Kumar, 2025.
"Artificial intelligence-based human-centric decision support framework : an application to predictive maintenance in asset management under pandemic environments,"
Post-Print
hal-05170615, HAL.
Handle:
RePEc:hal:journl:hal-05170615
DOI: 10.1007/s10479-021-04373-w
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05170615. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.