IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-05149845.html
   My bibliography  Save this paper

Locomotor constraints favor the evolution of the human pygmy phenotype in tropical rainforests

Author

Listed:
  • Vivek Venkataraman

    (IAST - Institute for Advanced Study in Toulouse)

  • Ak Yegian

    (Unknown)

  • Ian J. Wallace

    (Unknown)

  • N. Holowka

    (Unknown)

  • I. Tacey

    (Unknown)

  • Michael Gurven

    (Unknown)

  • Thomas S. Kraft

    (Unknown)

Abstract

The convergent evolution of the human pygmy phenotype in tropical rainforests is widely assumed to reflect adaptation in response to the distinct ecological challenges of this habitat (e.g. high levels of heat and humidity, high pathogen load, low food availability, and dense forest structure), yet few precise adaptive benefits of this phenotype have been proposed. Here, we describe and test a biomechanical model of how the rainforest environment can alter gait kinematics such that short stature is advantageous in dense habitats. We hypothesized that environmental constraints on step length in rainforests alter walking mechanics such that taller individuals are expected to walk more slowly due to their inability to achieve preferred step lengths in the rainforest. We tested predictions from this model with experimental field data from two short-statured populations that regularly forage in the rainforest: the Batek of Peninsular Malaysia and the Tsimane of the Bolivian Amazon. In accordance with model expectations, we found stature-dependent constraints on step length in the rainforest and concomitant reductions in walking speed that are expected to compromise foraging efficiency. These results provide the first evidence that the human pygmy phenotype is beneficial in terms of locomotor performance and highlight the value of applying laboratory-derived biomechanical models to field settings for testing evolutionary hypotheses.

Suggested Citation

  • Vivek Venkataraman & Ak Yegian & Ian J. Wallace & N. Holowka & I. Tacey & Michael Gurven & Thomas S. Kraft, 2018. "Locomotor constraints favor the evolution of the human pygmy phenotype in tropical rainforests," Post-Print hal-05149845, HAL.
  • Handle: RePEc:hal:journl:hal-05149845
    DOI: 10.1098/rspb.2018.1492
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05149845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.