Author
Listed:
- Christian Bontemps
(TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, ENAC - Ecole Nationale de l'Aviation Civile, CNRS - Centre National de la Recherche Scientifique)
- Jean-Pierre Florens
(TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS - Centre National de la Recherche Scientifique, EHESS - École des hautes études en sciences sociales)
- Nour Meddahi
(TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS - Centre National de la Recherche Scientifique, EHESS - École des hautes études en sciences sociales)
Abstract
In this paper, we consider the problem of ecological inference when one observes the conditional distributions of Y|W and Z|W from aggregate data and attempts to infer the conditional distribution of Y|Z without observing Y and Z in the same sample. First, we show that this problem can be transformed into a linear equation involving operators for which, under suitable regularity assumptions, least squares solutions are available. We then propose the use of the least squares solution with the minimum Hilbert–Schmidt norm, which, in our context, can be structurally interpreted as the solution with minimum dependence between Y and Z. Interestingly, in the case where the conditioning variable W is discrete and belongs to a finite set, such as the labels of units/groups/cities, the solution of this minimal dependence has a closed form. In the more general case, we use a regularization scheme and show the convergence of our proposed estimator. A numerical evaluation of our procedure is proposed.
Suggested Citation
Christian Bontemps & Jean-Pierre Florens & Nour Meddahi, 2025.
"Functional ecological inference,"
Post-Print
hal-05141883, HAL.
Handle:
RePEc:hal:journl:hal-05141883
DOI: 10.1016/j.jeconom.2024.105918
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05141883. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.