IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-05114929.html
   My bibliography  Save this paper

Improving B2B customer churn through action rule mining

Author

Listed:
  • Emil Guliyev

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

  • Juliana Sanchez Ramirez

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

  • Arno de Caigny

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

  • Kristof Coussement

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

Abstract

Business-to-business (B2B) firms must maintain robust customer bases to ensure recurring revenue. To do so effectively, they should engage in churn prediction. Proactively identifying potential churners and taking proactive retention measures help companies safeguard their revenue streams and build strong, long-lasting relationships with customers, which enhances their sustainability and competitive performance in dynamic, competitive markets. Yet, extant B2B customer churn models often fail to offer truly practical or actionable decision support, such that marketers must rely on their intuition and exert additional effort to define appropriate preventive retention measures. To address this research gap between research models and actionable insights, the current study proposes B2B-ARM, a B2B actionable rule model (ARM), that offers clear action paths for proactive retention management. A real-life case study of a European B2B software company with 6275 contracts provides benchmark evidence that B2B-ARM can detect churn equally well as popular existing prediction models (i.e., decision tree, logistic regression, and naïve Bayes). Furthermore, B2B-ARM provides actionable recommendations, as well as direct remedies to prevent churn, such that marketers save both time and resources. Overall, B2B-ARM is a reliable, efficient, and practical tool for mitigating B2B churn and improving customer retention.

Suggested Citation

  • Emil Guliyev & Juliana Sanchez Ramirez & Arno de Caigny & Kristof Coussement, 2025. "Improving B2B customer churn through action rule mining," Post-Print hal-05114929, HAL.
  • Handle: RePEc:hal:journl:hal-05114929
    DOI: 10.1016/j.indmarman.2024.12.005
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05114929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.