IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04452695.html
   My bibliography  Save this paper

Examining the Generalizability of Research Findings from Archival Data

Author

Listed:
  • A. Delios
  • E.G. Clemente
  • T. Wu
  • H. Tan
  • Y. Wang
  • M. Gordon
  • D. Viganola
  • Z. Chen
  • A. Dreber
  • M. Johannesson
  • T. Pfeiffer
  • E.L. Uhlmann
  • A.M.A. Al-Aziz
  • A.T. Abraham
  • J. Trojan
  • M. Adamkovic
  • E. Agadullina
  • J. Ahn
  • C. Akinci
  • H. Akkas
  • D. Albrecht
  • S. Alzahawi
  • M. Amaral-Baptista
  • R. Anand
  • K.F.U. Ang
  • F. Anseel
  • J.J.B.R. Aruta
  • M. Ashraf
  • B.J. Baker
  • X. Bao
  • E. Baskin
  • H. Bathula
  • C.W. Bauman
  • J. Bavolar
  • S. Bayraktar
  • S.E. Beckman
  • A.S. Benjamin
  • S.E.V. Brown
  • J. Buckley
  • R.E. Buitrago
  • J.L. Bution
  • N. Byrd
  • C. Carrera
  • E.M. Caruso
  • M. Chen
  • L. Chen
  • E.E. Cicerali
  • E.D. Cohen
  • M. Crede
  • J. Cummins
  • L. Dahlander
  • D.P. Daniels
  • L.L. Daskalo
  • I.G.J. Dawson
  • M.V. Day
  • E. Dietl
  • A. Domurat
  • J. Dsilva
  • C. Du Plessis
  • D.I. Dubrov
  • S. Edris
  • C.T. Elbaek
  • M.M. Elsherif
  • T.R. Evans
  • M.R. Fellenz
  • S. Fiedler
  • M. Firat
  • R. Freitag
  • R.A. Furrer
  • R. Gautam
  • D.K. Gautam
  • B. Gearin
  • S. Gerschewski
  • O. Ghasemi
  • Z. Ghasemi
  • A. Ghosh
  • C. Giani
  • M.H. Goldberg
  • M. Goswami
  • L. Graf-Vlachy
  • H. Rajeshwari
  • J.A. Griffith
  • D. Grigoryev
  • J. Gu
  • A.L. Hadida
  • A.C. Hafenbrack
  • S. Hafenbrädl
  • J.J. Hammersley
  • H. Han
  • J.L. Harman
  • A. Hartanto
  • A.P. Henkel
  • Y.-C. Ho
  • B.C. Holding
  • F. Holzmeister
  • A. Horobet
  • T.S.-T. Huang
  • Y. Huang
  • J.R. Huntsinger
  • K. Idzikowska
  • H. Imada
  • R. Imran
  • M.J. Ingels
  • B. Jaeger
  • S.M.J. Janssen
  • F. Jia
  • A. Jiménez
  • J.L. Jin
  • N. Johannes
  • D. Jolles
  • B. Jozefiakova
  • P. Kačmár
  • T. Kalandadze
  • K. Kalimeri
  • P. Kang
  • J. Kantorowicz
  • D. Karada
  • H. Karimi-Rouzbahani
  • D.M.H. Kee
  • L. Keller
  • H.A. Khan
  • M. Knutsson
  • O. Kombeiz
  • A. Korniychuk
  • M. Kowal
  • J. Leder
  • L.W. Liang
  • T. Liew
  • F. Lin
  • C. Liu
  • B. Liu
  • M.C. Longo
  • A. Lovakov
  • M.P. Low
  • G.J.M. Lucas
  • O. Lukason
  • A.L. Ly
  • Z. Ma
  • A. Mafael
  • S. Mahmoudkalayeh
  • D. Manheim
  • A. Marcus
  • M.S. Marsh
  • J.M. Martin
  • L.E. Martinez
  • M. Martinoli
  • M. Martončik
  • T.C. Masters-Waage
  • R. Mata
  • H. Mazloomi
  • R.J. Mccarthy
  • P. Millroth
  • M. Mishra
  • S. Mishra
  • A. Mohr
  • D. Moreau
  • A. Myer
  • A. Nadler
  • S. Nair
  • G. Nilsonne
  • P. Niszczota
  • A. O'Mahony
  • M. Oberhauser
  • T. Obloj
  • Mehmet A. Orhan

    (Métis Lab EM Normandie - EM Normandie - École de Management de Normandie)

  • F. Oswald
  • T. Otterbring
  • P.E. Otto
  • I. Padrón-Hernández
  • A.J. Pan
  • M. Paruzel-Czachura
  • G. Pfuhl
  • A. Pirrone
  • S. Porcher
  • J. Protzko
  • S. Qi
  • R.-M. Rahal
  • Relax Md.S. Rahman
  • M.L. Reina
  • S. Rentala
  • Z. Riaz
  • I. Ropovik
  • L. Röseler
  • R.M. Ross
  • A. Rotella
  • L.H.O. Roth
  • T.J. Roulet
  • M.M. Rubin
  • A. Sammartino
  • J. Sanchez
  • A.D. Saville
  • M. Schaerer
  • J.E. Schleu
  • L. Schmallenbach
  • L. Schnabel
  • F.S. Spüntrup
  • B.M. Schumpe
  • T. Senanayake
  • R. Seri
  • F. Sheng
  • R.E. Snider
  • D. Song
  • V. Song
  • S.E. Starnawska
  • K.A. Stern
  • S.M. Stevens
  • E. Strømland
  • W. Su
  • H. Sun
  • K.P. Sweeney
  • R. Takamatsu
  • M. Terskova
  • K.S. Tey
  • W. Tierney
  • M.M. Todorova
  • D. Tolstoy
  • L. Torkkeli
  • J.M. Tybur
  • F.J. Valderrey
  • A.M. Vallina-Hernandez
  • R.P. Vasudevan
  • G.V. Rao
  • A. Vernet
  • T. Vissak
  • H. Voss
  • T. Wahle
  • J. Wai
  • L.E.T. Wakabayashi
  • J. Wang
  • P. Wang
  • Y. Wang
  • R.W. Warmenhoven
  • K. Wennberg
  • G. Wernicke
  • J.K. Woike
  • C.E. Wollbrant
  • G. Woodin
  • J.D. Wright
  • Q. Xia
  • Z. Xie
  • S. Yoon
  • W. Yuan
  • L. Yuan
  • M. Yucel
  • Z. Zheng
  • H. Zhou
  • C. Zogmaister
  • R. Zultan
  • Generalizability Tests Forecasting Collaboration

Abstract

This initiative examined systematically the extent to which a large set of archival research findings generalizes across contexts. We repeated the key analyses for 29 original strategic management effects in the same context (direct reproduction) as well as in 52 novel time periods and geographies; 45% of the reproductions returned results matching the original reports together with 55% of tests in different spans of years and 40% of tests in novel geographies. Some original findings were associated with multiple new tests. Reproducibility was the best predictor of generalizability-for the findings that proved directly reproducible, 84% emerged in other available time periods and 57% emerged in other geographies. Overall, only limited empirical evidence emerged for context sensitivity. In a forecasting survey, independent scientists were able to anticipate which effects would find support in tests in new samples. \textcopyright 2022 National Academy of Sciences. All rights reserved.

Suggested Citation

  • A. Delios & E.G. Clemente & T. Wu & H. Tan & Y. Wang & M. Gordon & D. Viganola & Z. Chen & A. Dreber & M. Johannesson & T. Pfeiffer & E.L. Uhlmann & A.M.A. Al-Aziz & A.T. Abraham & J. Trojan & M. Adam, 2022. "Examining the Generalizability of Research Findings from Archival Data," Post-Print hal-04452695, HAL.
  • Handle: RePEc:hal:journl:hal-04452695
    DOI: 10.1073/pnas.2120377119
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Holzmeister & Magnus Johannesson & Robert Böhm & Anna Dreber & Jürgen Huber & Michael Kirchler, 2023. "Heterogeneity in effect size estimates: Empirical evidence and practical implications," Working Papers 2023-17, Faculty of Economics and Statistics, Universität Innsbruck.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04452695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.