Author
Listed:
- Christopher Rieser
(Unknown)
- Anne Ruiz-Gazen
(TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)
- Christine Thomas-Agnan
(TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)
Abstract
We consider models for network-indexed multivariate data, also known as graph signals, involving a dependence between variables as well as across graph nodes. The dependence across nodes is typically established through the entries of the Laplacian matrix by imposing a distribution that relates the graph signal from one node to the next. Based on such distributional assumptions of the graph signal, we focus on outliers detection and introduce the new concept of edgewise outliers. For this purpose, we first derive the distribution of some sums of squares, in particular squared Mahalanobis distances that can be used to fix detection rules and thresholds for outlier detection. We then propose a robust version of the deterministic Minimum Covariance Determinant (MCD) algorithm that we call edgewise MCD. An application on simulated data shows the interest of taking the dependence structure into account. We also illustrate the utility of the proposed method with a real data set involving French departmental election data.
Suggested Citation
Christopher Rieser & Anne Ruiz-Gazen & Christine Thomas-Agnan, 2023.
"Edgewise outliers of network indexed signals,"
Post-Print
hal-04373812, HAL.
Handle:
RePEc:hal:journl:hal-04373812
DOI: 10.1109/TSP.2023.3347646
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04373812. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.