IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04037328.html

A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation

Author

Listed:
  • Stéphane Crépey

    (LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité)

  • Noufel Frikha

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Azar Louzi

    (LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité)

Abstract

We propose a multilevel stochastic approximation (MLSA) scheme for the computation of the value-at-risk (VaR) and expected shortfall (ES) of a financial loss, which can only be computed via simulations conditional on the realization of future risk factors. Thus, the problem of estimating its VaR and ES is nested in nature and can be viewed as an instance of stochastic approximation problems with biased innovations. In this framework, for a prescribed accuracy $\varepsilon$, the optimal complexity of a nested stochastic approximation algorithm is shown to be of order $\varepsilon^{-3}$. To estimate the VaR, our MLSA algorithm attains an optimal complexity of order $\varepsilon^{-2-\delta}$ , where $\delta<1$ is some parameter depending on the integrability degree of the loss, while to estimate the ES, it achieves an optimal complexity of order $\varepsilon^{-2}|\ln{\varepsilon}|^2$. Numerical studies of the joint evolution of the error rate and the execution time demonstrate how our MLSA algorithm regains a significant amount of the performance lost due to the nested nature of the problem.

Suggested Citation

  • Stéphane Crépey & Noufel Frikha & Azar Louzi, 2025. "A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation," Post-Print hal-04037328, HAL.
  • Handle: RePEc:hal:journl:hal-04037328
    DOI: 10.1007/s00780-025-00573-5
    Note: View the original document on HAL open archive server: https://hal.science/hal-04037328v3
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04037328v3/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s00780-025-00573-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael B. Giles & Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Efficient Risk Estimation for the Credit Valuation Adjustment," Papers 2301.05886, arXiv.org, revised May 2024.
    2. Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04304985, HAL.
    3. Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Post-Print hal-04304985, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphane Crépey & Noufel Frikha & Azar Louzi & Jonathan Spence, 2024. "Adaptive Multilevel Stochastic Approximation of the Value-at-Risk [Approximation stochastique adaptative à plusieurs niveaux de la valeur à risque]," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04670735, HAL.
    2. St'ephane Cr'epey & Noufel Frikha & Azar Louzi & Jonathan Spence, 2024. "Adaptive Multilevel Stochastic Approximation of the Value-at-Risk," Papers 2408.06531, arXiv.org.
    3. Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04304985, HAL.
    4. St'ephane Cr'epey & Noufel Frikha & Azar Louzi & Gilles Pag`es, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Papers 2311.15333, arXiv.org, revised Jan 2026.
    5. Roberto Daluiso & Marco Pinciroli & Michele Trapletti & Edoardo Vittori, 2023. "CVA Hedging by Risk-Averse Stochastic-Horizon Reinforcement Learning," Papers 2312.14044, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04037328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.