IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03174376.html
   My bibliography  Save this paper

Automated fact-value distinction in court opinions

Author

Listed:
  • Yu Cao
  • Elliott Ash
  • Daniel L. Chen

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper studies the problem of automated classification of fact statements and value statements in written judicial decisions. We compare a range of methods and demonstrate that the linguistic features of sentences and paragraphs can be used to successfully classify them along this dimension. The Wordscores method by Laver et al. (Am Polit Sci Rev 97(2):311–331, 2003) performs best in held out data. In an application, we show that the value segments of opinions are more informative than fact segments of the ideological direction of U.S. circuit court opinions.

Suggested Citation

  • Yu Cao & Elliott Ash & Daniel L. Chen, 2020. "Automated fact-value distinction in court opinions," Post-Print hal-03174376, HAL.
  • Handle: RePEc:hal:journl:hal-03174376
    DOI: 10.1007/s10657-020-09645-7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Laver, Michael & Benoit, Kenneth & Garry, John, 2003. "Extracting Policy Positions from Political Texts Using Words as Data," American Political Science Review, Cambridge University Press, vol. 97(2), pages 311-331, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alain Marciano & Antonio Nicita & Giovanni Battista Ramello, 2020. "Puzzles in the big data revolution: an introduction," European Journal of Law and Economics, Springer, vol. 50(3), pages 339-344, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Hug & Tobias Schulz, 2007. "Referendums in the EU’s constitution building process," The Review of International Organizations, Springer, vol. 2(2), pages 177-218, June.
    2. Yang, Chao & Huang, Cui, 2022. "Quantitative mapping of the evolution of AI policy distribution, targets and focuses over three decades in China," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    3. Ralf Meinhardt & Sebastian Junge & Martin Weiss, 2018. "The organizational environment with its measures, antecedents, and consequences: a review and research agenda," Management Review Quarterly, Springer, vol. 68(2), pages 195-235, April.
    4. Torsten J. Selck, 2005. "Improving the Explanatory Power of Bargaining Models," Journal of Theoretical Politics, , vol. 17(3), pages 371-375, July.
    5. Cory Koedel & Jiaxi Li & Matthew G. Springer & Li Tan, 2018. "Teacher Performance Ratings and Professional Improvement," Working Papers 1808, Department of Economics, University of Missouri.
    6. Huang, Cui & Yang, Chao & Su, Jun, 2021. "Identifying core policy instruments based on structural holes: A case study of China’s nuclear energy policy," Journal of Informetrics, Elsevier, vol. 15(2).
    7. Sarel, Roee & Demirtas, Melanie, 2021. "Delegation in a multi-tier court system: Are remands in the U.S. federal courts driven by moral hazard?," European Journal of Political Economy, Elsevier, vol. 68(C).
    8. Yu, Feifei & Wang, Liting & Li, Xiaotong, 2020. "The effects of government subsidies on new energy vehicle enterprises: The moderating role of intelligent transformation," Energy Policy, Elsevier, vol. 141(C).
    9. Pierre-Marc Daigneault & Dominic Duval & Louis M. Imbeau, 2018. "Supervised scaling of semi-structured interview transcripts to characterize the ideology of a social policy reform," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(5), pages 2151-2162, September.
    10. Maria Stella Righettini, 2021. "Framing Sustainability. Evidence from Participatory Forums to Taylor the Regional 2030 Agenda to Local Contexts," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    11. Hayo, Bernd & Henseler, Kai & Steffen Rapp, Marc & Zahner, Johannes, 2022. "Complexity of ECB communication and financial market trading," Journal of International Money and Finance, Elsevier, vol. 128(C).
    12. Protte, Benjamin, 2012. "Does Fleet Street shape politics? Estimating the Effect of Newspaper Coverage about Globalization on the Support for Unemployment Insurance," Working Papers 12-19, University of Mannheim, Department of Economics.
    13. Osterloh, Steffen, 2012. "Words speak louder than actions: The impact of politics on economic performance," Journal of Comparative Economics, Elsevier, vol. 40(3), pages 318-336.
    14. Kenneth Benoit & Michael Laver, 2005. "Mapping the Irish Policy Space - Voter and Party Spaces in Preferential Elections," The Economic and Social Review, Economic and Social Studies, vol. 36(2), pages 83-108.
    15. McCullough, Ellen B., 2017. "Labor productivity and employment gaps in Sub-Saharan Africa," Food Policy, Elsevier, vol. 67(C), pages 133-152.
    16. Harris, Colin & Myers, Andrew & Kaiser, Adam, 2023. "The humanizing effect of market interaction," Journal of Economic Behavior & Organization, Elsevier, vol. 205(C), pages 489-507.
    17. Seraphine F. Maerz & Carsten Q. Schneider, 2020. "Comparing public communication in democracies and autocracies: automated text analyses of speeches by heads of government," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 517-545, April.
    18. Hayo, Bernd & Henseler, Kai & Rapp, Marc Steffen, 2019. "Estimating the monetary policy interest-rate-to-performance sensitivity of the European banking sector at the zero lower bound," Finance Research Letters, Elsevier, vol. 31(C).
    19. Baerg, Nicole Rae, 2014. "War of the Words: How Elites' Communication Changes the Economy," MPRA Paper 59823, University Library of Munich, Germany.

    More about this item

    Keywords

    Facts versus law; Law and machine learning; Law and NLP; Text data;
    All these keywords.

    JEL classification:

    • K40 - Law and Economics - - Legal Procedure, the Legal System, and Illegal Behavior - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03174376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.