IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02361905.html

On some ordinal models for decision making under uncertainty

Author

Listed:
  • Denis Bouyssou

    (LAMSADE - Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Marc Pirlot

    (Faculté polytechnique de Mons - UMONS - Université de Mons = University of Mons)

Abstract

In the field of Artificial Intelligence many models for decision making under uncertainty have been proposed that deviate from the traditional models used in Decision Theory, i.e. the Subjective Expected Utility (SEU) model and its many variants. These models aim at obtaining simple decision rules that can be implemented by efficient algorithms while based on inputs that are less rich than what is required in traditional models. One of these models, called the likely dominance (LD) model, consists in declaring that an act is preferred to another as soon as the set of states on which the first act gives a better outcome than the second act is judged more likely than the set of states on which the second act is preferable. The LD model is at much variance with the SEU model. Indeed, it has a definite ordinal flavor and it may lead to preference relations between acts that are not transitive. This paper proposes a general model for decision making under uncertainty tolerating intransitive and/or incomplete preferences that will contain both the SEU and the LD models as particular cases. Within the framework of this general model, we propose a characterization of the preference relations that can be obtained with the LD model. This characterization shows that the main distinctive feature of such relations lies in the very poor relation comparing preference differences that they induce on the set of outcomes. Copyright Springer Science+Business Media, LLC 2008
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Denis Bouyssou & Marc Pirlot, 2008. "On some ordinal models for decision making under uncertainty," Post-Print hal-02361905, HAL.
  • Handle: RePEc:hal:journl:hal-02361905
    DOI: 10.1007/s10479-008-0329-y
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Wu & Liang Liang, 2012. "A multiple criteria ranking method based on game cross-evaluation approach," Annals of Operations Research, Springer, vol. 197(1), pages 191-200, August.
    2. Anna Trunk & Hendrik Birkel & Evi Hartmann, 2020. "On the current state of combining human and artificial intelligence for strategic organizational decision making," Business Research, Springer;German Academic Association for Business Research, vol. 13(3), pages 875-919, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02361905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.