IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02313229.html

Robust Filtering

Author

Listed:
  • Laurent E. Calvet

    (HEC Paris - Ecole des Hautes Etudes Commerciales)

  • Veronika Czellar

    (EM - EMLyon Business School)

  • Elvezio Ronchetti

    (UNIGE - Université de Genève = University of Geneva)

Abstract

Filtering methods are powerful tools to estimate the hidden state of a statespace model from observations available in real time. However, they are known to be highly sensitive to the presence of small misspecifications of the underlying model and to outliers in the observation process. In this paper, we show that the methodology of robust statistics can be adapted to sequential filtering. We define a filter as being robust if the relative error in the state distribution caused by misspecifications is uniformly bounded by a linear function of the perturbation size. Since standard filters are nonrobust even in the simplest cases, we propose robustified filters which provide accurate state and parameter inference in the presence of model misspecifications. In particular, the robust particle filter naturally mitigates the degeneracy problems that plague the bootstrap particle filter (Gordon, Salmond and Smith, 1993) and its many extensions. We illustrate the good properties of robust filters in linear and nonlinear state-space examples.

Suggested Citation

  • Laurent E. Calvet & Veronika Czellar & Elvezio Ronchetti, 2015. "Robust Filtering," Post-Print hal-02313229, HAL.
  • Handle: RePEc:hal:journl:hal-02313229
    DOI: 10.1080/01621459.2014.983520
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02313229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.