IDEAS home Printed from
   My bibliography  Save this paper

On making causal claims : A review and recommendations


  • John Antonakis

    (UNIL - Université de Lausanne = University of Lausanne)

  • Samuel Bendahan

    (UNIL - Université de Lausanne = University of Lausanne)

  • Philippe Jacquart

    (UNIL - Université de Lausanne = University of Lausanne)

  • Rafael Lalive

    (UNIL - Université de Lausanne = University of Lausanne)


Social scientists often estimate models from correlational data, where the independent variable has not been exogenously manipulated; they also make implicit or explicit causal claims based on these models. When can these claims be made? We answer this question by first discussing design and estimation conditions under which model estimates can be interpreted, using the randomized experiment as the gold standard. We show how endogeneity – which includes omitted variables, omitted selection, simultaneity, common-method variance, and measurement error – renders estimates causally uninterpretable. Second, we present methods that allow researchers to test causal claims in situations where randomization is not possible or when causal interpretation could be confounded; these methods include fixed-effects panel, sample selection, instrumental variable, regression discontinuity, and difference-in-differences models. Third, we take stock of the methodological rigor with which causal claims are being made in a social sciences discipline by reviewing a representative sample of 110 articles on leadership published in the previous 10 years in top-tier journals. Our key finding is that researchers fail to address at least 66% and up to 90% of design and estimation conditions that make causal claims invalid. We conclude by offering 10 suggestions on how to improve non-experimental research.

Suggested Citation

  • John Antonakis & Samuel Bendahan & Philippe Jacquart & Rafael Lalive, 2010. "On making causal claims : A review and recommendations," Post-Print hal-02313119, HAL.
  • Handle: RePEc:hal:journl:hal-02313119
    DOI: 10.1016/j.leaqua.2010.10.010

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02313119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.