IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01447844.html
   My bibliography  Save this paper

On the weak convergence of the kernel density estimator in the uniform topology

Author

Listed:
  • Gilles Stupfler

    (School of Mathematical Sciences [Nottingham] - UON - University of Nottingham, UK, GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

Abstract

The pointwise asymptotic properties of the Parzen-Rosenblatt kernel estimator fˆn of a probability density function f on Rd have received great attention, and so have its integrated or uniform errors. It has been pointed out in a couple of recent works that the weak convergence of its centered and rescaled versions in a weighted Lebesgue Lp space, 1≤p\textless∞, considered to be a difficult problem, is in fact essentially uninteresting in the sense that the only possible Borel measurable weak limit is 0 under very mild conditions. This paper examines the weak convergence of such processes in the uniform topology. Specifically, we show that if fn(x)=E(fˆn(x)) and (rn) is any nonrandom sequence of positive real numbers such that rn/n√→0 then, with probability 1, the sample paths of any tight Borel measurable weak limit in an ℓ∞ space on Rd of the process rn(fˆn−fn) must be almost everywhere zero. The particular case when the estimator fˆn has continuous sample paths is then considered and simple conditions making it possible to examine the actual existence of a weak limit in this framework are provided.

Suggested Citation

  • Gilles Stupfler, 2016. "On the weak convergence of the kernel density estimator in the uniform topology," Post-Print hal-01447844, HAL.
  • Handle: RePEc:hal:journl:hal-01447844
    DOI: 10.1214/16-ECP4638
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Fang & Juwon Seo, 2019. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Papers 1910.07689, arXiv.org, revised Sep 2021.

    More about this item

    Keywords

    Economie quantitative;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01447844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.