IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00903874.html
   My bibliography  Save this paper

Industry-Wide Technology Road Mapping in Double Unknown - The Case of the Semiconductor Industry

Author

Listed:
  • Patrick Cogez

    (ST-CROLLES - STMicroelectronics [Crolles])

  • Olga Kokshagina

    (ST-CROLLES - STMicroelectronics [Crolles], CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique)

  • Pascal Le Masson

    (CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique)

  • Benoit Weil

    (CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique)

Abstract

Many companies face today a dilemma of "double unknown" when deciding where to put their research dollars: ignorance of which one among many possible technologies is most likely to emerge and similar ignorance of which one among many possible applications will most likely be a driver for the technology. Generic technologies are widely recognized to be beneficial for various market applications ([Bresnahan, Trajtenberg, 1995]; [Maine, Garsney, 2006]) and recent research results show that double unknown can lead companies to organize design activity to develop generic technologies suitable for several emerging markets application [Kokshagina, et al. 2012a]. However, the investigations so far focused on the level of the individual firm, while a "double unknown" situation is typically characterizing an industrial sector as a whole. This is in particular the case of the semiconductor industry: While the International Technology Roadmap for Semiconductors (ITRS) primary focus has been and still is the continuation of Moore's law, it introduced recently the "More than Moore" concept, to account for technologies which do not necessarily follow the CMOS miniaturization trends, and represent a growing part of the total silicon-based semiconductor market. The sheer diversity of both those technologies and their potential applications renders a roadmapping exercise very challenging. Nevertheless, given the benefits that roadmapping has brought to the semiconductor industry, the International Roadmap Committee (IRC) of the ITRS has decided to extend its activities to this new field. Which strategies do the ITRS experts implement to select which technologies to roadmap and which applications to target in double unknown? In this paper, we show that to design roadmaps for More than Moore technologies, the ITRS experts apply a strategy of "common unknown" [Kokshagina, et al. 2012a], along with additional community building activities specific to the situation of inter-firm collaboration.

Suggested Citation

  • Patrick Cogez & Olga Kokshagina & Pascal Le Masson & Benoit Weil, 2013. "Industry-Wide Technology Road Mapping in Double Unknown - The Case of the Semiconductor Industry," Post-Print hal-00903874, HAL.
  • Handle: RePEc:hal:journl:hal-00903874
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Armand Hatchuel & Pascal Le Masson & Benoit Weil & Marine Agogué & Akin Kazakçi & Sophie Hooge, 2016. "Multiple forms of applications and impacts of a design theory -ten years of industrial applications of C-K theory," Post-Print hal-01184426, HAL.
    2. Armand Hatchuel & Pascal Le Masson & Benoit Weil & Marine Agogué & Akin Kazakçi & Sophie Hooge, 2015. "Multiple forms of applications and impacts of a design theory -ten years of industrial applications of C-K theory," Post-Print hal-01200460, HAL.
    3. Olga Kokshagina & Pascal Le Masson & Benoit Weil, 2015. "Portfolio management in double unknown situations: technological platformsand the role of cross-application managers," Post-Print hal-01199929, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00903874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.