IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00881714.html

Joint employee weekly timetabling and daily rostering: a decision-support tool for a logistics platform

Author

Listed:
  • Anne-Laure Ladier

    (G-SCOP_GCSP - Gestion et Conduite des Systèmes de Production - G-SCOP - Laboratoire des sciences pour la conception, l'optimisation et la production - UJF - Université Joseph Fourier - Grenoble 1 - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - INPG - Institut National Polytechnique de Grenoble - CNRS - Centre National de la Recherche Scientifique)

  • Gülgün Alpan

    (G-SCOP_GCSP - Gestion et Conduite des Systèmes de Production - G-SCOP - Laboratoire des sciences pour la conception, l'optimisation et la production - UJF - Université Joseph Fourier - Grenoble 1 - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - INPG - Institut National Polytechnique de Grenoble - CNRS - Centre National de la Recherche Scientifique)

  • Bernard Penz

    (G-SCOP_GCSP - Gestion et Conduite des Systèmes de Production - G-SCOP - Laboratoire des sciences pour la conception, l'optimisation et la production - UJF - Université Joseph Fourier - Grenoble 1 - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - INPG - Institut National Polytechnique de Grenoble - CNRS - Centre National de la Recherche Scientifique)

Abstract

To deal with their highly variable workload, logistics companies make their task force flexible using multi-skilled employees, flexible working hours or short-term contracts. Together with the legal constraints and the handling equipments' capacities, these possibilities make personnel scheduling a complex task. This paper describes a model to support their chain of decisions from the weekly timetabling to the daily rostering (detailed task allocation). We divide the problem into three sub-problems depending on the type of decision to be made: (1) workforce dimensioning, (2) task allocation for a week, and (3) detailed rostering for a day. The three decisions are made sequentially, the output of a step being the input of the next one. Each step is modeled as a mixed integer linear program which is described and commented. The proposed models are tested with industrial data as well as generated instances. From the observations made in an industrial context, we show that our model is an actual management tool supporting the managers in their operational decisions. This tool is currently used by the company which provided us with the industrial data. Based on the results with the generated instances, we present the conditions under which the models can be solved within a reasonable amount of time, and we assess the robustness of the daily rostering when the input data changes.

Suggested Citation

  • Anne-Laure Ladier & Gülgün Alpan & Bernard Penz, 2014. "Joint employee weekly timetabling and daily rostering: a decision-support tool for a logistics platform," Post-Print hal-00881714, HAL.
  • Handle: RePEc:hal:journl:hal-00881714
    DOI: 10.1016/j.ejor.2013.10.023
    Note: View the original document on HAL open archive server: https://hal.science/hal-00881714v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00881714v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.ejor.2013.10.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A.T. Ernst & H. Jiang & M. Krishnamoorthy & B. Owens & D. Sier, 2004. "An Annotated Bibliography of Personnel Scheduling and Rostering," Annals of Operations Research, Springer, vol. 127(1), pages 21-144, March.
    2. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    3. Detienne, Boris & Pridy, Laurent & Pinson, ric & Rivreau, David, 2009. "Cut generation for an employee timetabling problem," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1178-1184, September.
    4. Brucker, Peter & Qu, Rong & Burke, Edmund, 2011. "Personnel scheduling: Models and complexity," European Journal of Operational Research, Elsevier, vol. 210(3), pages 467-473, May.
    5. Guy Eitzen & David Panton & Graham Mills, 2004. "Multi-Skilled Workforce Optimisation," Annals of Operations Research, Springer, vol. 127(1), pages 359-372, March.
    6. Campbell, Gerard M. & Diaby, Moustapha, 2002. "Development and evaluation of an assignment heuristic for allocating cross-trained workers," European Journal of Operational Research, Elsevier, vol. 138(1), pages 9-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ladier, Anne-Laure & Alpan, Gülgün & Penz, Bernard, 2014. "Joint employee weekly timetabling and daily rostering: A decision-support tool for a logistics platform," European Journal of Operational Research, Elsevier, vol. 234(1), pages 278-291.
    2. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    3. De Bruecker, Philippe & Van den Bergh, Jorne & Beliën, Jeroen & Demeulemeester, Erik, 2015. "Workforce planning incorporating skills: State of the art," European Journal of Operational Research, Elsevier, vol. 243(1), pages 1-16.
    4. Mohamed-Amine Ouberkouk & Jean-Paul Boufflet & Aziz Moukrim, 2023. "Effective adaptive large neighborhood search for a firefighters timetabling problem," Journal of Heuristics, Springer, vol. 29(4), pages 545-580, December.
    5. Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
    6. Restrepo, María I. & Gendron, Bernard & Rousseau, Louis-Martin, 2017. "A two-stage stochastic programming approach for multi-activity tour scheduling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 620-635.
    7. Dohn, Anders & Mason, Andrew, 2013. "Branch-and-price for staff rostering: An efficient implementation using generic programming and nested column generation," European Journal of Operational Research, Elsevier, vol. 230(1), pages 157-169.
    8. Maenhout, Broos & Vanhoucke, Mario, 2013. "An integrated nurse staffing and scheduling analysis for longer-term nursing staff allocation problems," Omega, Elsevier, vol. 41(2), pages 485-499.
    9. Lin, Shih-Wei & Ying, Kuo-Ching, 2014. "Minimizing shifts for personnel task scheduling problems: A three-phase algorithm," European Journal of Operational Research, Elsevier, vol. 237(1), pages 323-334.
    10. Jaime Miranda & Pablo A. Rey & Antoine Sauré & Richard Weber, 2018. "Metro Uses a Simulation-Optimization Approach to Improve Fare-Collection Shift Scheduling," Interfaces, INFORMS, vol. 48(6), pages 529-542, November.
    11. Hans Corsten & Ferdinand Becker & Hagen Salewski, 2020. "Integrating truck and workforce scheduling in a cross-dock: analysis of different workforce coordination policies," Journal of Business Economics, Springer, vol. 90(2), pages 207-237, March.
    12. Salem Al-Yakoob & Hanif Sherali, 2007. "Mixed-integer programming models for an employee scheduling problem with multiple shifts and work locations," Annals of Operations Research, Springer, vol. 155(1), pages 119-142, November.
    13. Peter Brucker & Rong Qu, 2014. "Network flow models for intraday personnel scheduling problems," Annals of Operations Research, Springer, vol. 218(1), pages 107-114, July.
    14. David Rea & Craig Froehle & Suzanne Masterson & Brian Stettler & Gregory Fermann & Arthur Pancioli, 2021. "Unequal but Fair: Incorporating Distributive Justice in Operational Allocation Models," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2304-2320, July.
    15. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    16. Esmaeilbeigi, Rasul & Mak-Hau, Vicky & Yearwood, John & Nguyen, Vivian, 2022. "The multiphase course timetabling problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1098-1119.
    17. Elina Rönnberg & Torbjörn Larsson, 2010. "Automating the self-scheduling process of nurses in Swedish healthcare: a pilot study," Health Care Management Science, Springer, vol. 13(1), pages 35-53, March.
    18. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    19. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    20. Damcı-Kurt, Pelin & Zhang, Minjiao & Marentay, Brian & Govind, Nirmal, 2019. "Improving physician schedules by leveraging equalization: Cases from hospitals in U.S," Omega, Elsevier, vol. 85(C), pages 182-193.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00881714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.