IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00458515.html
   My bibliography  Save this paper

La géographie des collaborations pour l'innovation : le rôle des contraintes amont

Author

Listed:
  • Olivier Bouba-Olga

    () (CRIEF - Centre de Recherche sur l'Intégration Economique et Financière - Université de Poitiers)

  • Marie Ferru

    (CRIEF - Centre de Recherche sur l'Intégration Economique et Financière - Université de Poitiers)

Abstract

La littérature économique qui traite de la géographie de l'innovation se focalise généralement sur les contraintes qui pèsent sur les acteurs au moment du processus de collaboration, en insistant notamment sur la dimension tacite des connaissances, qui imposerait des rapports de face à face. L'objectif de cet article est de montrer que d'autres contraintes, en amont du processus de collaboration, structurent peut-être plus fortement encore la géographie observée : les contraintes de ressources, d'une part, et les contraintes de mises en relation, d'autre part. Le schéma théorique proposé s'appuie sur les développements récents de l'économie de proximité. Certaines des propositions avancées sont testées empiriquement via un modèle gravitaire, puis par l'intermédiaire de la reconstruction d'une centaine d'histoires de collaborations.

Suggested Citation

  • Olivier Bouba-Olga & Marie Ferru, 2009. "La géographie des collaborations pour l'innovation : le rôle des contraintes amont," Post-Print hal-00458515, HAL.
  • Handle: RePEc:hal:journl:hal-00458515 Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-00458515
    as

    Download full text from publisher

    File URL: https://hal.archives-ouvertes.fr/hal-00458515/document
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jacqueline Meulman & Peter Verboon, 1993. "Points of view analysis revisited: Fitting multidimensional structures to optimal distance components with cluster restrictions on the variables," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 7-35, March.
    2. Vichi, Maurizio & Kiers, Henk A. L., 2001. "Factorial k-means analysis for two-way data," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 49-64, July.
    3. Ulf Böckenholt & Ingo Böckenholt, 1991. "Constrained latent class analysis: Simultaneous classification and scaling of discrete choice data," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 699-716, December.
    4. Geert Soete & Suzanne Winsberg, 1993. "A latent class vector model for preference ratings," Journal of Classification, Springer;The Classification Society, vol. 10(2), pages 195-218, December.
    5. Wayne DeSarbo & Duncan Fong & John Liechty & Jennifer Coupland, 2005. "Evolutionary preference/utility functions: A dynamic perspective," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 179-202, March.
    6. Belk, Russell W, 1975. " Situational Variables and Consumer Behavior," Journal of Consumer Research, Oxford University Press, vol. 2(3), pages 157-164, December.
    7. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    8. Wayne DeSarbo & Vithala Rao, 1984. "GENFOLD2: A set of models and algorithms for the general UnFOLDing analysis of preference/dominance data," Journal of Classification, Springer;The Classification Society, vol. 1(1), pages 147-186, December.
    9. Joseph Bennett & William Hays, 1960. "Multidimensional unfolding: Determining the dimensionality of ranked preference data," Psychometrika, Springer;The Psychometric Society, vol. 25(1), pages 27-43, March.
    10. J. Douglas Carroll & Sandra Pruzansky & Joseph Kruskal, 1980. "Candelinc: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 3-24, March.
    11. K. Deun & P. Groenen & W. Heiser & F. Busing & L. Delbeke, 2005. "Interpreting degenerate solutions in unfolding by use of the vector model and the compensatory distance model," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 45-69, March.
    12. Puto, Christopher P, 1987. " The Framing of Buying Decisions," Journal of Consumer Research, Oxford University Press, vol. 14(3), pages 301-315, December.
    13. Frank Busing & Patrick Groenen & Willem Heiser, 2005. "Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 71-98, March.
    14. Ben-Akiva, Moshe & Morikawa, Takayuki & Shiroishi, Fumiaki, 1992. "Analysis of the reliability of preference ranking data," Journal of Business Research, Elsevier, vol. 24(2), pages 149-164, March.
    15. Henk Kiers & Donatella Vicari & Maurizio Vichi, 2005. "Simultaneous classification and multidimensional scaling with external information," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 433-460, September.
    16. Stef Buuren & Willem Heiser, 1989. "Clusteringn objects intok groups under optimal scaling of variables," Psychometrika, Springer;The Psychometric Society, vol. 54(4), pages 699-706, September.
    17. Amos Tversky & Itamar Simonson, 1993. "Context-Dependent Preferences," Management Science, INFORMS, vol. 39(10), pages 1179-1189, October.
    18. Geert Soete & Willem Heiser, 1993. "A latent class unfolding model for analyzing single stimulus preference ratings," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 545-565, December.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00458515. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.