IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00375344.html

Perceptron versus Automaton

Author

Listed:
  • Sylvain Béal

    (CREUSET - Centre de Recherche Economique de l'Université de Saint-Etienne - UJM - Université Jean Monnet - Saint-Étienne)

Abstract

We study the finitely repeated prisoner’s dilemma in which the players are restricted to choosing strategies which are implementable by a machine with a bound on its complexity. One player must use a finite automaton while the other player must use a finite perceptron. Some examples illustrate that the sets of strategies which are induced by these two types of machines are different and not ordered by set inclusion. The main result establishes that a cooperation in almost all stages of the game is an equilibrium outcome if the complexity of the machines players may use is limited enough. This result persists when there are more than T states in the player’s automaton, where T is the duration of the repeated game. We further consider the finitely repeated prisoner’s dilemma in which the two players are restricted to choosing strategies which are implementable by perceptrons and prove that players can cooperate in most of the stages provided that the complexity of their perceptrons is sufficiently reduced
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Sylvain Béal, 2006. "Perceptron versus Automaton," Post-Print hal-00375344, HAL.
  • Handle: RePEc:hal:journl:hal-00375344
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00375344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.