IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00187162.html

The core of bicapacities and bipolar games

Author

Listed:
  • Lijue Xie

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

Bicooperative games generalize classical cooperative games in the sense that a player is allowed to play in favor or against some aim, besides non participation. Bicapacities are monotonic bicooperative games, they are useful in decision making where underlying scales are of bipolar nature, i.e., they distinguish between good/satisfactory values and bad/unsatisfactory ones. We propose here a more general framework to represent such situations, called bipolar game. We study the problem of finding the core of such games, i.e., theset of additive dominating games.

Suggested Citation

  • Lijue Xie & Michel Grabisch, 2007. "The core of bicapacities and bipolar games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00187162, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00187162
    DOI: 10.1016/j.fss.2006.12.007
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00187162v1
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00187162v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.fss.2006.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00187162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.