IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-01396680.html

Long-term values in Markov Decision Processes and Repeated Games, and a new distance for probability spaces

Author

Listed:
  • Jérôme Renault

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique)

  • Xavier Venel

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

We study long-term Markov Decision Processes and Gambling Houses, with applications to any partial observation MDPs with finitely many states and zero-sum repeated games with an informed controller. We consider a decision-maker which is maximizing the weighted sum t≥1 θtrt, where rt is the expected reward of the t-th stage. We prove the existence of a very strong notion of long-term value called general uniform value, representing the fact that the decision-maker can play well independently of the evaluations (θt) t≥1 over stages, provided the total variation (or impatience) t≥1 |θt+1 − θt| is small enough. This result generalizes previous results of Rosenberg, Solan and Vieille [35] and Renault [31] that focus on arithmetic means and discounted evaluations. Moreover, we give a variational characterization of the general uniform value via the introduction of appropriate invariant measures for the decision problems, generalizing the fundamental theorem of gambling or the Aumann-Maschler cavu formula for repeated games with incomplete information. Apart the introduction of appropriate invariant measures, the main innovation in our proofs is the introduction of a new metric d * such that partial observation MDP's and repeated games with an informed controller may be associated to auxiliary problems that are non-expansive with respect to d *. Given two Borel probabilities over a compact subset X of a normed vector space, we define d * (u, v) = sup f ∈D 1 |u(f) − v(f)|, where D1 is the set of functions satisfying: ∀x, y ∈ X, ∀a, b ≥ 0, af (x) − bf (y) ≤ ax − by. The particular case where X is a simplex endowed with the L 1-norm is particularly interesting: d * is the largest distance over the probabilities with finite support over X which makes every disintegration non-expansive. Moreover, we obtain a Kantorovich-Rubinstein type duality formula for d * (u, v) involving couples of measures (α, β) over X × X such that the first marginal of α is u and the second marginal of β is v. MSC Classification: Primary: 90C40 ; Secondary: 60J20, 91A15.

Suggested Citation

  • Jérôme Renault & Xavier Venel, 2017. "Long-term values in Markov Decision Processes and Repeated Games, and a new distance for probability spaces," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01396680, HAL.
  • Handle: RePEc:hal:cesptp:hal-01396680
    DOI: 10.1287/moor.2016.0814
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabien Gensbittel & Marcin Peski & Jérôme Renault, 2019. "The Large Space Of Information Structures," Working Papers hal-02075905, HAL.
    2. Frédéric Koessler & Marie Laclau & Jerôme Renault & Tristan Tomala, 2022. "Long information design," Post-Print hal-03700394, HAL.
    3. Li, Jin & Quincampoix, Marc & Renault, Jérôme & Buckdahn, Rainer, 2019. "Representation formulas for limit values of long run stochastic optimal controls," TSE Working Papers 19-1007, Toulouse School of Economics (TSE).
    4. Koessler, Frederic & Laclau, Marie & Renault, Jérôme & Tomala, Tristan, 2022. "Long information design," Theoretical Economics, Econometric Society, vol. 17(2), May.
    5. Frédéric Koessler & Marie Laclau & Jerôme Renault & Tristan Tomala, 2022. "Long information design," PSE-Ecole d'économie de Paris (Postprint) hal-03700394, HAL.
    6. Rida Laraki & Jérôme Renault, 2020. "Acyclic Gambling Games," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1237-1257, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-01396680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.