IDEAS home Printed from https://ideas.repec.org/p/got/gotcrc/192.html
   My bibliography  Save this paper

Convergence of the risk for nonparametric IV quantile regression and nonparametric IV regression with full independence

Author

Listed:
  • Fabian Dunker

    (Georg-August-University Göttingen)

Abstract

In econometrics some nonparametric instrumental regression models and nonparametric demand models with endogeneity lead to nonlinear integral equations with unknown integral kernels. We prove convergence rates of the risk for the iteratively regularized Newton method applied to these problems. Compared to related results we relay on a weaker non-linearity condition and have stronger convergence results. We demonstrate by numerical simulations for a nonparametric IV regression problem with continuous instrument and regressor that the method produces better results than the standard method.

Suggested Citation

  • Fabian Dunker, 2015. "Convergence of the risk for nonparametric IV quantile regression and nonparametric IV regression with full independence," Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 192, Courant Research Centre PEG.
  • Handle: RePEc:got:gotcrc:192
    as

    Download full text from publisher

    File URL: http://www2.vwl.wiso.uni-goettingen.de/courant-papers/CRC-PEG_DP_192.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Steven Berry & Amit Gandhi & Philip Haile, 2013. "Connected Substitutes and Invertibility of Demand," Econometrica, Econometric Society, vol. 81(5), pages 2087-2111, September.
    2. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, vol. 27(03), pages 497-521, June.
    3. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    4. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    5. Donald W.K. Andrews, 2011. "Examples of L^2-Complete and Boundedly-Complete Distributions," Cowles Foundation Discussion Papers 1801, Cowles Foundation for Research in Economics, Yale University.
    6. Xavier d'Haultfoeuille & Philippe Février, 2011. "Identification of Nonseparable Modes with Endogeneity and Discrete Instruments," Working Papers 2011-28, Center for Research in Economics and Statistics.
    7. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82(5), pages 1749-1797, September.
    8. Dunker, Fabian & Hoderlein, Stefan & Kaido, Hiroaki, 2014. "Nonparametric Identification of Endogenous and Heterogeneous Aggregate Demand Models: Complements, Bundles and the Market Level," Economics Series 307, Institute for Advanced Studies.
    9. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    10. Chen, Xiaohong & Christensen, Timothy M., 2015. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," Journal of Econometrics, Elsevier, vol. 188(2), pages 447-465.
    11. Joel L. Horowitz, 2007. "Asymptotic Normality Of A Nonparametric Instrumental Variables Estimator," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1329-1349, November.
    12. Florens, Jean-Pierre & Johannes, Jan & Van Bellegem, Sébastien, 2011. "Identification And Estimation By Penalization In Nonparametric Instrumental Regression," Econometric Theory, Cambridge University Press, vol. 27(03), pages 472-496, June.
    13. Breunig, Christoph, 2015. "Goodness-of-fit tests based on series estimators in nonparametric instrumental regression," Journal of Econometrics, Elsevier, vol. 184(2), pages 328-346.
    14. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    15. Horowitz, Joel L., 2014. "Adaptive nonparametric instrumental variables estimation: Empirical choice of the regularization parameter," Journal of Econometrics, Elsevier, vol. 180(2), pages 158-173.
    16. Dunker, Fabian & Florens, Jean-Pierre & Hohage, Thorsten & Johannes, Jan & Mammen, Enno, 2014. "Iterative estimation of solutions to noisy nonlinear operator equations in nonparametric instrumental regression," Journal of Econometrics, Elsevier, vol. 178(P3), pages 444-455.
    17. Joel L. Horowitz & Sokbae Lee, 2007. "Nonparametric Instrumental Variables Estimation of a Quantile Regression Model," Econometrica, Econometric Society, vol. 75(4), pages 1191-1208, July.
    18. Chernozhukov, Victor & Imbens, Guido W. & Newey, Whitney K., 2007. "Instrumental variable estimation of nonseparable models," Journal of Econometrics, Elsevier, vol. 139(1), pages 4-14, July.
    19. Joel L. Horowitz, 2011. "Applied Nonparametric Instrumental Variables Estimation," Econometrica, Econometric Society, vol. 79(2), pages 347-394, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabian Dunker & Stefan Hoderlein & Hiroaki Kaido, 2017. "Nonparametric Identification of Random Coefficients in Endogenous and Heterogeneous Aggregate Demand," Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 224, Courant Research Centre PEG.
    2. Fabian Dunker & Stefan Hoderlein & Hiroaki Kaido, 2017. "Nonparametric identification of random coefficients in endogenous and heterogeneous aggregate demand models," CeMMAP working papers CWP11/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Keywords

    Nonparametric regression; instrumental variables; nonlinear inverse problems; iterative regularization;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:got:gotcrc:192. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dominik Noe). General contact details of provider: http://www.uni-goettingen.de/en/82144.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.