IDEAS home Printed from https://ideas.repec.org/p/fth/pennfi/11-91.html
   My bibliography  Save this paper

Option Prices and the Underlying Asset's Return Distribution (Reprint 012)

Author

Listed:
  • Bruce D. Grundy

Abstract

This work examines the relation between option prices and the true, as opposed to risk-neutral, distribution of the underlying asset. If the underlying asset follows a diffusion with an instantaneous expected return at least as large as the instantaneous risk-free rate, observed option prices can be used to place bounds on the moments of the true distribution. An illustration of the paper’s results is provided by the analysis of the information concerning the mean and standard deviation of market returns contained in the prices of S&P 100 Index Options.

Suggested Citation

  • Bruce D. Grundy, "undated". "Option Prices and the Underlying Asset's Return Distribution (Reprint 012)," Rodney L. White Center for Financial Research Working Papers 11-91, Wharton School Rodney L. White Center for Financial Research.
  • Handle: RePEc:fth:pennfi:11-91
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilkens, Sascha & Roder, Klaus, 2006. "The informational content of option-implied distributions: Evidence from the Eurex index and interest rate futures options market," Global Finance Journal, Elsevier, vol. 17(1), pages 50-74, September.
    2. Wang, Chou-Wen & Wu, Chin-Wen & Tzang, Shyh-Weir, 2012. "Implementing option pricing models when asset returns follow an autoregressive moving average process," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 8-25.
    3. Yu, Xisheng & Xie, Xiaoke, 2015. "Pricing American options: RNMs-constrained entropic least-squares approach," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 155-173.
    4. José Manuel Campa & P.H. Kevin Chang & James F. Refalo, 1999. "An Options-Based Analysis of Emerging Market Exchange Rate Expectations: Brazil's Real Plan, 1994-1997," Working Papers 99-08, New York University, Leonard N. Stern School of Business, Department of Economics.
    5. Donald Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Yale School of Management Working Papers amz2581, Yale School of Management, revised 01 Jul 2005.
    6. Bollen, Nicolas P. B. & Gray, Stephen F. & Whaley, Robert E., 2000. "Regime switching in foreign exchange rates: Evidence from currency option prices," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 239-276.
    7. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    8. Zuluaga, Luis F. & Peña, Javier & Du, Donglei, 2009. "Third-order extensions of Lo's semiparametric bound for European call options," European Journal of Operational Research, Elsevier, vol. 198(2), pages 557-570, October.
    9. repec:spr:annopr:v:237:y:2016:i:1:d:10.1007_s10479-014-1651-1 is not listed on IDEAS
    10. Hsuan-Chu Lin & Ren-Raw Chen & Oded Palmon, 2012. "Non-parametric method for European option bounds," Review of Quantitative Finance and Accounting, Springer, vol. 38(1), pages 109-129, January.
    11. Lo, Andrew W & Wang, Jiang, 1995. " Implementing Option Pricing Models When Asset Returns Are Predictable," Journal of Finance, American Finance Association, vol. 50(1), pages 87-129, March.
    12. Silva, A. Christian & Prange, Richard E., 2007. "Virtual volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 507-516.
    13. Wong, Man Hong & Zhang, Shuzhong, 2013. "Computing best bounds for nonlinear risk measures with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 204-212.
    14. Jose Manuel Campa & P.H. Kevin Chang, 1996. "Options-based evidence of the credibility of the peseta in the ERM," Investigaciones Economicas, Fundación SEPI, vol. 20(1), pages 3-22, January.
    15. repec:dau:papers:123456789/30 is not listed on IDEAS
    16. Donald Brown & Rustam Ibragimov & Johan Walden, 2015. "Bounds for path-dependent options," Annals of Finance, Springer, vol. 11(3), pages 433-451, November.
    17. Wong, Man Hong & Zhang, Shuzhong, 2014. "On distributional robust probability functions and their computations," European Journal of Operational Research, Elsevier, vol. 233(1), pages 23-33.
    18. Martin Cincibuch, 2002. "Distributions Implied by Exchange Traded Options: A Ghost’s Smile?," CERGE-EI Working Papers wp200, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    19. Carmona, Julio & León, Angel & Vaello-Sebastià, Antoni, 2012. "Does stock return predictability affect ESO fair value?," European Journal of Operational Research, Elsevier, vol. 223(1), pages 188-202.
    20. Donald J. Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Cowles Foundation Discussion Papers 1518, Cowles Foundation for Research in Economics, Yale University.
    21. Campa, Jose M. & Chang, P. H. Kevin & Reider, Robert L., 1998. "Implied exchange rate distributions: evidence from OTC option markets1," Journal of International Money and Finance, Elsevier, vol. 17(1), pages 117-160, February.
    22. Jose M. Campa & P.H. Kevin Chang & Robert L. Reider, 1997. "Implied Exchange Rate Distributions: Evidence from OTC Option Markets," NBER Working Papers 6179, National Bureau of Economic Research, Inc.
    23. Tianyang Wang & James Dyer & Warren Hahn, 2015. "A copula-based approach for generating lattices," Review of Derivatives Research, Springer, vol. 18(3), pages 263-289, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:pennfi:11-91. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: http://edirc.repec.org/data/rwupaus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.