IDEAS home Printed from
   My bibliography  Save this paper

On Efficiency of Linear Estimators Under Heavy-Tailedness


  • Rustam Ibragimov


The present paper develops a new unified approach to the analysis of efficiency, peakedness and majorization properties of linear estimators. It further studies the robustness of these properties to heavy-tailedness assumptions. the main results show that peakedness and majorization phenomena for random samples from log-concavely distributed populations established in the seminal work by Proschan (1965) continue to hold for not extremely thick- tailed distributions. However, these phenomena are reversed in the case of populations with extremely heavy-tailed densities. Among other results, we show that the sample mean is the best linear unbiased estimator of the population mean for not extremely heavy-tailed populations in the sense of its peakedness properties. Moreover, in such a case, the sample mean exhibits the important property of monotone consistency and, thus, an increase in the sample size always improves its performance. However, as we demonstrate, efficiency of the sample mean in the sense of its peakedness decreases with the sample size if the sample mean is used to estimate the population center under extreme thick-tailedness. We also provide applications of the main efficiency and majorization comparison results in the study of concentration inequalities for linear estimators as well as their extensions to the case of wide classes of dependent data. The main results obtained in the paper provide the basis for the analysis of many problems in a number of other areas, in addition to econometrics and statistics, and, in particular, have applications in the study of robustness of model of firm growth for firms that can invest into information about their markets, value at risk analysis, optimal strategies for a multiproduct monopolist as well that of inheritance models in mathematical evolutionary theory.

Suggested Citation

  • Rustam Ibragimov, 2005. "On Efficiency of Linear Estimators Under Heavy-Tailedness," Harvard Institute of Economic Research Working Papers 2085, Harvard - Institute of Economic Research.
  • Handle: RePEc:fth:harver:2085

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Kilian, Lutz, 1999. "Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 491-510, Sept.-Oct.
    2. Owen Lamont, 1998. "Earnings and Expected Returns," Journal of Finance, American Finance Association, vol. 53(5), pages 1563-1587, October.
    3. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    4. Malcolm Baker & Jeffrey Wurgler, 2000. "The Equity Share in New Issues and Aggregate Stock Returns," Journal of Finance, American Finance Association, vol. 55(5), pages 2219-2257, October.
    5. Campbell, John Y., 2001. "Why long horizons? A study of power against persistent alternatives," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 459-491, December.
    6. Atsushi Inoue & Lutz Kilian, 2005. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.
    7. Kothari, S. P. & Shanken, Jay, 1997. "Book-to-market, dividend yield, and expected market returns: A time-series analysis," Journal of Financial Economics, Elsevier, vol. 44(2), pages 169-203, May.
    8. Walter Torous & Rossen Valkanov & Shu Yan, 2004. "On Predicting Stock Returns with Nearly Integrated Explanatory Variables," The Journal of Business, University of Chicago Press, vol. 77(4), pages 937-966, October.
    9. Polk, Christopher & Thompson, Samuel & Vuolteenaho, Tuomo, 2006. "Cross-sectional forecasts of the equity premium," Journal of Financial Economics, Elsevier, vol. 81(1), pages 101-141, July.
    10. Wayne E. Ferson & Sergei Sarkissian & Timothy T. Simin, 2003. "Spurious Regressions in Financial Economics?," Journal of Finance, American Finance Association, vol. 58(4), pages 1393-1414, August.
    11. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    12. John Y. Campbell & Robert J. Shiller, 2001. "Valuation Ratios and the Long-Run Stock Market Outlook: An Update," NBER Working Papers 8221, National Bureau of Economic Research, Inc.
    13. Fama, Eugene F. & Schwert, G. William, 1977. "Asset returns and inflation," Journal of Financial Economics, Elsevier, vol. 5(2), pages 115-146, November.
    14. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    15. Alexander W. Butler & Gustavo Grullon & James P. Weston, 2005. "Can Managers Forecast Aggregate Market Returns?," Journal of Finance, American Finance Association, vol. 60(2), pages 963-986, April.
    16. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    17. Martin Lettau, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    18. Lewellen, Jonathan, 2004. "Predicting returns with financial ratios," Journal of Financial Economics, Elsevier, vol. 74(2), pages 209-235, November.
    19. Clark, Todd E. & McCracken, Michael W., 2005. "The power of tests of predictive ability in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 124(1), pages 1-31, January.
    20. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    21. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    22. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
    23. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    24. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    25. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    26. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    27. Jacob Boudoukh & Roni Michaely & Matthew Richardson & Michael R. Roberts, 2007. "On the Importance of Measuring Payout Yield: Implications for Empirical Asset Pricing," Journal of Finance, American Finance Association, vol. 62(2), pages 877-915, April.
    28. Campbell, John Y. & Viceira, Luis M., 2002. "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors," OUP Catalogue, Oxford University Press, number 9780198296942, June.
    29. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    30. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    31. Pontiff, Jeffrey & Schall, Lawrence D., 1998. "Book-to-market ratios as predictors of market returns," Journal of Financial Economics, Elsevier, vol. 49(2), pages 141-160, August.
    32. Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(05), pages 1131-1147, October.
    33. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-218, March.
    34. repec:cup:etheor:v:11:y:1995:i:5:p:1131-47 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Rustam Ibragimov & Johan Walden, 2011. "Value at risk and efficiency under dependence and heavy-tailedness: models with common shocks," Annals of Finance, Springer, vol. 7(3), pages 285-318, August.
    2. Ibragimov, Rustam, 2008. "Heavy-tailedness and threshold sex determination," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2804-2810, November.
    3. Chirok Han & Jin Seo Cho & Peter C. B. Phillips, 2011. "Infinite Density at the Median and the Typical Shape of Stock Return Distributions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 282-294, April.
    4. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:harver:2085. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.