IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Optimal Versus Robust Inference in Nearly Integrated Non Gaussian Models

Listed author(s):
  • Samuel P. Thompson
Registered author(s):

    Abstract: Elliott, Rothenberg and Stock (1996) derived a class of point-optimal unit root tests in a time series model with Gaussian errors. Other authors have proposed “robust” tests which are not optimal for any model but perform well when the error distribution has thick tails. I derive a class of point-optimal tests for models with non Gaussian errors. When the true error distribution is known and has thick tails, the point-optimal tests are generally more powerful than Elliott et al. ’s (1996) tests as well as the robust tests. However, when the true error distribution is unknown and asymmetric, the point-optimal tests can behave very badly. Thus there is a tradeoff between robustness to unknown error distributions and optimality with respect to the trend coefficients

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Harvard - Institute of Economic Research in its series Harvard Institute of Economic Research Working Papers with number 2003.

    in new window

    Date of creation: 2003
    Handle: RePEc:fth:harver:2003
    Contact details of provider: Postal:
    200 Littauer Center, Cambridge, MA 02138

    Phone: 617-495-2144
    Fax: 617-495-7730
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:fth:harver:2003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.