IDEAS home Printed from https://ideas.repec.org/p/exe/wpaper/0105.html
   My bibliography  Save this paper

A Randomized Procedure for Choosing Data Transformation

Author

Listed:
  • Valentina Corradi

    (Department of Economics, University of Exeter)

  • Norman R. Swanson

    (Texas A&M University)

Abstract

Standard unit root and stationarity tests (see e.g. Dickey and Fuller (1979)) assume linearity under both the null and the alternative hypothesis. Violation of this linearity assumption can result in severe size and power distortion, both in finite and large samples. Thus, it is reasonable to address the problem of data transformation before running a unit root test. In this paper we propose a simple randomized procedure, coupled with sample conditioning, for choosing between levels and log-levels specifications in the presence of deterministic and/or stochastic trends. In particular, we add a randomized component to a basic test statistic, proceed by conditioning on the sample, and show that for all samples except a set of measure zero, the statistic has a X2 limiting distribution under the null hypothesis (log linearity), while it diverges under the alternative hypothesis (level linearity). Once we have chosen the proper data transformation, we remain with the standard problem of testing for a unit root, either in levels or in logs. Monte Carlo findings suggest that the proposed test has good finite sample properties for samples of at least 300 observations. In addition, an examination of the King, Plosser, Stock and Watson (1991) data set is carried out, and evidence in favor of using logged data is provided.

Suggested Citation

  • Valentina Corradi & Norman R. Swanson, 2001. "A Randomized Procedure for Choosing Data Transformation," Discussion Papers 0105, University of Exeter, Department of Economics.
  • Handle: RePEc:exe:wpaper:0105
    as

    Download full text from publisher

    File URL: https://exetereconomics.github.io/RePEc/dpapers/DP0105.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Deterministic trend; nonlinear transformation; nonstationarity; randomized procedure.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:exe:wpaper:0105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sebastian Kripfganz (email available below). General contact details of provider: https://edirc.repec.org/data/deexeuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.