IDEAS home Printed from https://ideas.repec.org/p/ema/worpap/2025-15.html
   My bibliography  Save this paper

Recovering Scheduling Preferences in Dynamic Departure Time Models

Author

Listed:
  • André de Palma
  • Zhenyu Yang
  • Pietro Giardina
  • Nikolas Gerolimnis

    (CY Cergy Paris Université, THEMA)

Abstract

We aim to infer commuters’ scheduling preferences from their observed arrival times, given an exogenous traffic congestion pattern. To do this, we employ a structural model that characterizes how users balance congestion costs against the penalties for arriving early or late relative to an ideal time. In this framework, each commuter selects an arrival time that minimizes her overall trip cost by considering the within-day congestion pattern along with her individual scheduling preference. By incorporating the distribution of these preferences and desired arrival times across the population, we can estimate the likelihood of observing arrivals at specific times. Using synthetic data, we then apply the maximum likelihood estimation (MLE) method to recover the parameters of the joint distribution of scheduling preferences and desired arrival times. Our numerical results demonstrate the effectiveness of the proposed method.

Suggested Citation

  • André de Palma & Zhenyu Yang & Pietro Giardina & Nikolas Gerolimnis, 2025. "Recovering Scheduling Preferences in Dynamic Departure Time Models," THEMA Working Papers 2025-15, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  • Handle: RePEc:ema:worpap:2025-15
    as

    Download full text from publisher

    File URL: https://thema.u-cergy.fr/IMG/pdf/2025-15.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucas javaudin & André de Palma, 2024. "METROPOLIS2: Bridging Theory and Simulation in Agent-Based Transport Modeling," THEMA Working Papers 2024-03, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    2. Yildirimoglu, Mehmet & Geroliminis, Nikolas, 2013. "Experienced travel time prediction for congested freeways," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 45-63.
    3. AndrÊ de Palma & Robin Lindsey, 2000. "Private toll roads: Competition under various ownership regimes," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 34(1), pages 13-35.
    4. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    5. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    6. Andre de Palma & Moshe Ben-Akiva & Claude Lefevre & Nicolaos Litinas, 1983. "Stochastic Equilibrium Model of Peak Period Traffic Congestion," Transportation Science, INFORMS, vol. 17(4), pages 430-453, November.
    7. André Palma & Lucas Javaudin & Patrick Stokkink & Léandre Tarpin-Pitre, 2024. "Ride-sharing with inflexible drivers in the Paris metropolitan area," Transportation, Springer, vol. 51(3), pages 963-986, June.
    8. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    9. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    10. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    11. Pavithra Parthasarathi & Anupam Srivastava & Nikolas Geroliminis & David Levinson, 2011. "The importance of being early," Transportation, Springer, vol. 38(2), pages 227-247, March.
    12. Yang, Zhenyu & de Palma, André & Geroliminis, Nikolas, 2024. "Tailored priority allocation in the bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
    13. Jonathan D. Hall, 2024. "Inframarginal Travelers And Transportation Policy," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(3), pages 1519-1550, August.
    14. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    2. Yu, Xiaojuan & van den Berg, Vincent A.C. & Li, Zhi-Chun, 2023. "Congestion pricing and information provision under uncertainty: Responsive versus habitual pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    3. Yu, Xiaojuan & van den Berg, Vincent A.C. & Verhoef, Erik T., 2025. "Preference heterogeneity in a dynamic flow congestion model," Transportation Research Part B: Methodological, Elsevier, vol. 195(C).
    4. Yu, Xiaojuan & van den Berg, Vincent A.C. & Verhoef, Erik T. & Li, Zhi-Chun, 2022. "Will all autonomous cars cooperate? Brands’ strategic interactions under dynamic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    5. Carlo Cenedese & Patrick Stokkink & Nikolas Gerolimins & John Lygeros, 2021. "Incentive-Based Electric Vehicle Charging for Managing Bottleneck Congestion," Papers 2111.05600, arXiv.org.
    6. Deng, Yao & Sheng, Dian & Liu, Baoli, 2021. "Managing ship lock congestion in an inland waterway: A bottleneck model with a service time window," Transport Policy, Elsevier, vol. 112(C), pages 142-161.
    7. Braid, Ralph M., 2018. "Partial peak-load pricing of a transportation bottleneck with homogeneous and heterogeneous values of time," Economics of Transportation, Elsevier, vol. 16(C), pages 29-41.
    8. Guo, Ren-Yong & Yang, Hai & Huang, Hai-Jun & Li, Xinwei, 2018. "Day-to-day departure time choice under bounded rationality in the bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 832-849.
    9. Wu, Jiyan & Tian, Ye & Sun, Jian & Michael Zhang, H. & Wang, Yunpeng, 2023. "Public or private? Optimal organization for incentive-based travel demand management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    10. Vincent van den Berg, "undated". "Self-financing roads under coarse tolling and heterogeneous preferences," Tinbergen Institute Discussion Papers 22-045/VIII, Tinbergen Institute.
    11. Zhu, Tingting & Li, Yao & Long, Jiancheng, 2022. "Departure time choice equilibrium and tolling strategies for a bottleneck with continuous scheduling preference," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    12. Pudāne, Baiba, 2019. "Departure Time Choice and Bottleneck Congestion with Automated Vehicles: Role of On-board Activities," MPRA Paper 96328, University Library of Munich, Germany.
    13. van den Berg, Vincent A.C. & Verhoef, Erik T., 2016. "Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 43-60.
    14. Liu, Qiumin & van den Berg, Vincent A.C. & Verhoef, Erik T. & Jiang, Rui, 2025. "Pricing in the stochastic bottleneck model with price-sensitive demand," Transportation Research Part B: Methodological, Elsevier, vol. 194(C).
    15. Fosgerau, Mogens & Kim, Jinwon, 2019. "Commuting and land use in a city with bottlenecks: Theory and evidence," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 182-204.
    16. van den Berg, Vincent A.C., 2024. "Self-financing roads under coarse tolling and preference heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    17. Han, Xiao & Yu, Yun & Gao, Zi-You & Zhang, H. Michael, 2021. "The value of pre-trip information on departure time and route choice in the morning commute under stochastic traffic conditions," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 205-226.
    18. Tang, Zhe-Yi & Tian, Li-Jun & Liu, Peng & Huang, Hai-Jun, 2025. "Parking reservation scheme in a commuting system with shared autonomous vehicles and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    19. Wu, Jiyan & Tian, Ye & Sun, Jian, 2023. "Managing ridesharing with incentives in a bottleneck model," Research in Transportation Economics, Elsevier, vol. 101(C).
    20. Anderson, Michael L. & Davis, Lucas W., 2020. "An empirical test of hypercongestion in highway bottlenecks," Journal of Public Economics, Elsevier, vol. 187(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ema:worpap:2025-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Marcassa The email address of this maintainer does not seem to be valid anymore. Please ask Stefania Marcassa to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/themafr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.