IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Breaking the Curse of Dimensionality

Listed author(s):
  • Mark Coppejans

    (Duke University)

Registered author(s):

    This paper proposes a new nonparametric estimator for general regression functions with multiple regressors. The method used here is motivated by a remarkable result derived by Kolmogorov (1957) and later tightened by Lorentz (1966). In short, any continuous function f(x_1,...,x_d) has the representation G[a_1 P_1(x_1) + ... + a_d P_1(x_d)] + ... + G[a_1 P_m(x_1) + ... + a_d P_m(x_d)], m = 2d+1, where G(.) is a continuous function, P_k(.), k=1,...,2d+1, is Lipschitz of order one and strictly increasing, and a_j, j=1,...,d, is some constant. Generalizing this result, we propose the following estimator, g_1[a_1,1 p_1(x_1) + ... + a_d,1 p_1(x_d)] + ... + g_m[a_1,d P_m(x_1) + ... + a_d,d p_m(x_d)], where both g_k(.) and p_k(.) are twice continuously differentiable. These functions are estimated using regression cubic B-splines, which have excellent numerical properties. This problem has been previously intractable because there existed no method for imposing monotonicity on the p_k(.)'s, a priori, such that the estimator is dense in the set of all monotonic cubic B-splines. We derive a method that only requires 2(r+1)+1 restrictions, where r is the number of interior knots. Rates of convergence in L_2 are the same as the optimal rate for the one-dimensional case. A simulation experiment shows that the estimator works well when optimization is performed by using the back-fitting algorithm. The monotonic restriction has many other applications besides the one presented here, such as estimating a demand function. With only r+2 more constraints, it is also possible to impose concavity.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: main text
    Download Restriction: no

    Paper provided by Econometric Society in its series Econometric Society World Congress 2000 Contributed Papers with number 0830.

    in new window

    Date of creation: 01 Aug 2000
    Handle: RePEc:ecm:wc2000:0830
    Contact details of provider: Phone: 1 212 998 3820
    Fax: 1 212 995 4487
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:0830. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.