IDEAS home Printed from
   My bibliography  Save this paper

Shrinkage methods for instrumental variable estimation


  • Ryo Okui


This paper proposes shrinkage methods in instrumental variable estimations to solve the ``many instruments'' problem. Even though using a large number of instruments reduces the asymptotic variances of the estimators, it has been observed both in theoretical works and in practice that in finite samples the estimators may behave very poorly if the number of instruments is large. This problem can be addressed by shrinking the influence of a subset of instrumental variables. An instrumental variable estimator is the solution to an equation which is a weighted sum of sample moment conditions; We reconstruct the estimating equation by shrinking some elements of that weighting vector. This idea can also be interpreted as shrinking some of the OLS coefficient estimates from the regression of the endogenous variables on the instruments then using the predicted values of the endogenous variables based on the shrunk coefficient estimates as the instruments. The shrinkage parameter is chosen to minimize the asymptotic MSE. It is found that the optimal shrinkage parameter has a closed form which leads to easy implementation. The Monte Carlo result shows that the shrinkage methods work well and moreover perform better than the instrument selection procedure in Donald and Newey (2001) in several situations relevant to applications

Suggested Citation

  • Ryo Okui, 2004. "Shrinkage methods for instrumental variable estimation," Econometric Society 2004 Far Eastern Meetings 678, Econometric Society.
  • Handle: RePEc:ecm:feam04:678

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item


    TSLS; LIML; shrinkage estimator; instrumental variables;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:feam04:678. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.