IDEAS home Printed from https://ideas.repec.org/p/ecm/ausm04/267.html
   My bibliography  Save this paper

A Multi-Level Panel Smooth Transition Autoregression for US Sectoral Production

Author

Listed:
  • P.H. Franses
  • D. Fok
  • D. van Dijk

Abstract

Macroeconomic time series are often obtained as an aggregate across regions or economic sectors. Even when the ultimate goal is to forecast the aggregate series it may be beneficial to consider the underlying disaggregate series. This especially holds when the disaggregate series are generated by a non-linear process. The aggregate of such series follows a very complicated process. Aggregating a number of relatively simple models for individual regions or sectors to a model of the macro series may lead to a more accurate description than when a model for the aggregate is considered. We introduce a multi-level smooth transition model for a panel of time series variables, which can be used to examine the presence of common non-linear features across many such variables. The model is positioned in between a fully pooled model, which imposes such common features, and a fully heterogeneous model, which might render estimation problems for some of the panel members. To keep the model tractable, we introduce a second-stage model, which links the parameters in the transition functions with observable explanatory variables. We discuss representation, estimation by concentrated simulated maximum likelihood and inference. We illustrate our model for data on industrial production of 18 US manufacturing sectors, and document that there are subtle differences across sectors in leads and lags for business cycle recessions and expansions.

Suggested Citation

  • P.H. Franses & D. Fok & D. van Dijk, 2004. "A Multi-Level Panel Smooth Transition Autoregression for US Sectoral Production," Econometric Society 2004 Australasian Meetings 267, Econometric Society.
  • Handle: RePEc:ecm:ausm04:267
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vahid, F & Engle, Robert F, 1993. "Common Trends and Common Cycles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(4), pages 341-360, Oct.-Dec..
    2. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    3. Eric J. Bartelsman & Wayne Gray, 1996. "The NBER Manufacturing Productivity Database," NBER Technical Working Papers 0205, National Bureau of Economic Research, Inc.
    4. Del Negro, Marco, 2002. "Asymmetric shocks among U.S. states," Journal of International Economics, Elsevier, vol. 56(2), pages 273-297, March.
    5. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    6. Lee, Kevin, 1997. "Modelling economic growth in the UK: An econometric case for disaggregated sectoral analysis," Economic Modelling, Elsevier, vol. 14(3), pages 369-394, July.
    7. Bidarkota Prasad V., 1999. "Sectoral Investigation of Asymmetries in the Conditional Mean Dynamics of the Real U.S. GDP," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(4), pages 1-12, January.
    8. repec:fgv:epgrbe:v:47:n:2:a:1 is not listed on IDEAS
    9. Vahid, Farshid & Engle, Robert F., 1997. "Codependent cycles," Journal of Econometrics, Elsevier, vol. 80(2), pages 199-221, October.
    10. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    11. Wolak, Frank A., 1989. "Local and Global Testing of Linear and Nonlinear Inequality Constraints in Nonlinear Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(01), pages 1-35, April.
    12. Lee, Lung-Fei, 1995. "Asymptotic Bias in Simulated Maximum Likelihood Estimation of Discrete Choice Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 437-483, June.
    13. Anderson, Heather M. & Vahid, Farshid, 1998. "Testing multiple equation systems for common nonlinear components," Journal of Econometrics, Elsevier, vol. 84(1), pages 1-36, May.
    14. Mario Forni & Lucrezia Reichlin, 1998. "Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 453-473.
    15. Van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for Smooth Transition Nonlinearity in the Presence of Outliers," Journal of Business & Economic Statistics, American Statistical Association, pages 217-235.
    16. Engle, Robert F. & Issler, Joao Victor, 1995. "Estimating common sectoral cycles," Journal of Monetary Economics, Elsevier, vol. 35(1), pages 83-113, February.
    17. Gourieroux, Christian & Monfort, Alain, 1993. "Simulation-based inference : A survey with special reference to panel data models," Journal of Econometrics, Elsevier, vol. 59(1-2), pages 5-33, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleg Korenok & Bruce Mizrach & Stan Radchenko, 2004. "The Microeconomics of Macroeconomic Asymmetries: Sectoral Driving Forces and Firm Level Characteristics," Departmental Working Papers 200405, Rutgers University, Department of Economics.

    More about this item

    Keywords

    Panel of time series; business cycle; non-linearity;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:ausm04:267. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.