IDEAS home Printed from https://ideas.repec.org/p/ecl/stabus/4087.html
   My bibliography  Save this paper

Neural Design for Genetic Perturbation Experiments

Author

Listed:
  • Pacchiano, Aldo

    (Microsoft Research NYC)

  • Wulsin, Drausin

    (Immunai)

  • Barton, Robert A.

    (Immunai)

  • Voloch, Luis

Abstract

The problem of how to genetically modify cells in order to maximize a certain cellular phenotype has taken center stage in drug development over the last few years (with, for example, genetically edited CAR-T, CAR-NK, and CAR-NKT cells entering cancer clinical trials). Exhausting the search space for all possible genetic edits (perturbations) or combinations thereof is infeasible due to cost and experimental limitations. This work provides a theoretically sound framework for iteratively exploring the space of perturbations in pooled batches in order to maximize a target phenotype under an experimental budget. Inspired by this application domain, we study the problem of batch query bandit optimization and introduce the Optimistic Arm Elimination (OAE) principle designed to find an almost optimal arm under different functional relationships between the queries (arms) and the outputs (rewards). We analyze the convergence properties of OAE by relating it to the Eluder dimension of the algorithm’s function class and validate that OAE outperforms other strategies in finding optimal actions in experiments on simulated problems, public datasets well-studied in bandit contexts, and in genetic perturbation datasets when the regression model is a deep neural network. OAE also outperforms the benchmark algorithms in 3 of 4 datasets in the GeneDisco experimental planning challenge.

Suggested Citation

  • Pacchiano, Aldo & Wulsin, Drausin & Barton, Robert A. & Voloch, Luis, 2023. "Neural Design for Genetic Perturbation Experiments," Research Papers 4087, Stanford University, Graduate School of Business.
  • Handle: RePEc:ecl:stabus:4087
    as

    Download full text from publisher

    File URL: https://www.gsb.stanford.edu/faculty-research/working-papers/neural-design-genetic-perturbation-experiments
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:4087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gsstaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.