IDEAS home Printed from https://ideas.repec.org/p/ecl/stabus/3925.html
   My bibliography  Save this paper

Behavioral Targeting, Machine Learning and Regression Discontinuity Designs

Author

Listed:
  • Narayanan, Sridhar

    (Stanford U)

  • Kalyanam, Kirthi

    (Santa Clara U)

Abstract

The availability of behavioral and other data on customers and advances in machine learning methods have enabled targeting of customers in a variety of domains, including pricing, advertising, recommendation systems and personal selling contexts. Typically, such targeting involves first training a machine learning algorithm on a training dataset, and then using that algorithm to score current or potential customers. When the score crosses a threshold, a treatment (such as an offer, an advertisement or a recommendation) is assigned. In this paper, we demonstrate that this has given rise to opportunities for causal measurement of the effects of such targeted treatments using regression discontinuity designs (RDD). Investigating machine learning in a regression discontinuity framework leads to several insights. First, we characterize conditions under which regression discontinuity designs can be used to measure not just local average treatment effects (LATE), but also average treatment effects (ATE). In some situations, we show that RD can be used to find bounds on the ATE even if we are unable to find point estimates. We then apply this to the machine learning based targeting contexts by studying two different ways in which the score required for targeting is generated, and explore the utility of RDD to these contexts. Finally, we apply our approach in the empirical context of the targeting of retargeted display advertising. Using a dataset from a context where a machine learning based targeting policy was employed in parallel with a randomized controlled trial, we examine the performance of the RDD estimate in estimating the treatment effect, validate it using a placebo test and demonstrate its practical utility.

Suggested Citation

  • Narayanan, Sridhar & Kalyanam, Kirthi, 2020. "Behavioral Targeting, Machine Learning and Regression Discontinuity Designs," Research Papers 3925, Stanford University, Graduate School of Business.
  • Handle: RePEc:ecl:stabus:3925
    as

    Download full text from publisher

    File URL: https://www.gsb.stanford.edu/faculty-research/working-papers/behavioral-targeting-machine-learning-regression-discontinuity
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:3925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gsstaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.