IDEAS home Printed from https://ideas.repec.org/p/ecl/stabus/3381.html

Propensity Score Matching and Subclassification in Observational Studies with Multi-level Treatments

Author

Listed:
  • Yang, Shu

    (Harvard University)

  • Imbens, Guido W.

    (Stanford University)

  • Cui, Zhanglin

    (Eli Lilly and Company)

  • Faries, Douglas E.

    (Eli Lilly and Company)

  • Kadziola, Zbigniew

    (Eli Lilly and Company)

Abstract

In this paper, we develop new methods for estimating average treatment effects in observational studies, focusing on settings with more than two treatment levels under unconfoundedness given pre-treatment variables. We emphasize subclassification and matching methods which have been found to be effective in the binary treatment literature and which are among the most popular methods in that setting. Whereas the literature has suggested that these particular propensity-based methods do not naturally extend to the multi-level treatment case, we show, using the concept of weak unconfoundedness, that adjusting for or matching on a scalar function of the pre-treatment variables removes all biases associated with observed pre-treatment variables. We apply the proposed methods to an analysis of the effect of treatments for fibromyalgia. We also carry out a simulation study to assess the finite sample performance of the methods relative to previously proposed methods.

Suggested Citation

  • Yang, Shu & Imbens, Guido W. & Cui, Zhanglin & Faries, Douglas E. & Kadziola, Zbigniew, 2015. "Propensity Score Matching and Subclassification in Observational Studies with Multi-level Treatments," Research Papers 3381, Stanford University, Graduate School of Business.
  • Handle: RePEc:ecl:stabus:3381
    as

    Download full text from publisher

    File URL: http://www.gsb.stanford.edu/gsb-cmis/gsb-cmis-download-auth/407976
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:3381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gsstaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.