IDEAS home Printed from https://ideas.repec.org/p/duk/dukeec/00-13.html
   My bibliography  Save this paper

Breaking the Curse of Dimensionality

Author

Listed:
  • Coppejans, Mark

Abstract

This paper proposes a new nonparametric estimator for general regression functions with multiple regressors. The method used here is motivated by a remarkable result derived by Kolmogorov (1957) and later tightened by Lorentz (1966). In short, they show that any continuous function of multiple variables can be written as univariate functions. As it stands, this representation is difficult to estimate because of its lack of smoothness. Hence we propose to use a generalization of their representation that allows for the univariate functions to be differentiable. The model will be estimated using B-splines, which have excellent numerical properties. A crucial restriction in this representation is that some of the functions must be increasing. One of the main contributions of this paper is that we develop a method for imposing monotonicity on the cubic B-splines, a priori, such that the estimator is dense in the set of all monotonic cubic B-splines. A simulation experiment shows that the estimator works well when optimization is performed by using the back-fitting algorithm. The monotonic restriction has many other applications besides the one presented here, such as estimating a demand function. With only r + 2 more constraints, it is also possible to impose concavity.

Suggested Citation

  • Coppejans, Mark, 2000. "Breaking the Curse of Dimensionality," Working Papers 00-13, Duke University, Department of Economics.
  • Handle: RePEc:duk:dukeec:00-13
    as

    Download full text from publisher

    File URL: http://www.econ.duke.edu/Papers/Abstracts00/abstract.00.13.html
    File Function: main text
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David E. A. Giles & Robert Draeseke, 2001. "Econometric Modelling based on Pattern recognition via the Fuzzy c-Means Clustering Algorithm," Econometrics Working Papers 0101, Department of Economics, University of Victoria.
    2. Mark Coppejans, Mico Mrkaic & Holger Sieg, 2000. "Experimentation And Learning In Rational Addiction Models With Multiple Addictive Goods," Computing in Economics and Finance 2000 81, Society for Computational Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:duk:dukeec:00-13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Department of Economics Webmaster). General contact details of provider: http://econ.duke.edu/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.